Dense Linear Algebra

David Bindel

20 Oct 2015



Matrix vector product
Simple y = Ax involves two indices

yi=>Y_ A
i

Can organize around either one:

% Row-oriented
for i = 1:n

y(i) = A(i,:)*x;
end

% Col-oriented

14

o
©]

5o
. o

=1
+

:n
y A(:,3)*x(3);

]
[OHLS

n

... or deal with index space in other ways!



Parallel matvec: 1D row-blocked

A X y
.XII

Receive broadcast xg, x1, x> into local xg, X1, Xo; then

On PO: AgoXo + Aot X1 + Ao2Xe = Yo
OnP1: Ajoxo + A11X1 + AraXxe = 4
On P20 Asoxo + Azi X1 + AzoXa = Vo



Parallel matvec: 1D col-blocked

A X
.XI

Independently compute

Aoo Aoo {Aoo-|
Z0=Ap|xo 20 =|Ap|x1 29 =|Ap| %

Ao Azo

and perform reduction: y = z(0) 4 z(1) 4 (2],



Parallel matvec: 2D blocked

» Involves broadcast and reduction
» ... but with subsets of processors



Parallel matvec: 2D blocked

Broadcast xp, = to local copies xg, x; at PO and P2
Broadcast x», ~ to local copies x», x3 at ~ and P3

In parallel, compute
{Aoo Aoq [Xo] _ Z(()O) [Xz]
Ao At X 21(0) X3
Xo B Zég)
X1 zés)

[Azo A21] [Xo] _ 253) {Azo Aoy
Azo  Asq] X1 zés) Azp A3y
W [ [
+ sl T @ T L
3 z z

Reduce across rows:

[}/o] _ Z((>O)
20




Parallel matmul

» Basic operation: C = C + AB
» Computation: 2n° flops
» Goal: 2n®/p flops per processor, minimal communication



1D layout

C

v

Block MATLAB notation: A(:,j) means jth block column
Processor j owns A(.,j), B(:, ), C(:,))

C(:,j) depends on all of A, but only B(:, )

How do we communicate pieces of A?

v

v

v



1D layout on bus (no broadcast)

C

v

Everyone computes local contributions first

PO sends A(:,0) to each processor j in turn;
processor j receives, computes A(:,0)B(0, j)
P1 sends A(:, 1) to each processor j in turn;
processor j receives, computes A(:,1)B(1,)

P2 sends A(:. 2) to each processor j in turn;
processor j receives, computes A(:,2)B(2, )

v

v

v



1D layout on bus (no broadcast)
C

Self A(:,O)% AG,D) A(.2)



1D layout on bus (no broadcast)

C(:,myproc) += A(:,myproc) *B(myproc,myproc)
for i = 0:p-1
for j = 0:p-1
if (1 == j) continue;
if (myproc == i) 1
send A(:,1) to processor j
if (myproc == 7)
receive A(:,1i) from i
C(:,myproc) += A(:,1i)*B(i,myproc)
end
end
end

Performance model?



1D layout on bus (no broadcast)

No overlapping communications, so in a simple o — 8 model:
» p(p — 1) messages
» Each message involves n?/p data
» Communication cost: p(p — 1)a + (p — 1)n?8



1D layout on ring

» Every process j can send data to j + 1 simultaneously

» Pass slices of A around the ring until everyone sees the
whole matrix (p — 1 phases).



1D layout on ring

tmp = A (myproc)
C(myproc) += tmp*B (myproc,myproc)
for 3 = 1 to p-1
sendrecv tmp to myproc+l mod p,
from myproc-1 mod p
C (myproc) += tmp+*B (myproc—3j mod p, myproc)

Performance model?



1D layout on ring

In a simple oo — 8 model, at each processor:
» p— 1 message sends (and simultaneous receives)
» Each message involves n?/p data
» Communication cost: (p — 1)a + (1 — 1/p)n?3



Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);
end

Parallel: Assume p = s? processors, block s x s matrices.
Fora 2 x 2 example:

[Coo C01} _ {AooBoo A00301] n [/%1310 Ao1B11]
Cio Ci4 A10Boo  A10Bo1 A11Bio  A11Bi1

» Processor for each (i,j) = parallel work for each k!

» Note everyone in row i uses A(/, k) at once,
and everyone in row j uses B(k, j) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each 1 in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col

On processor (i,3), C(i,3j) += A(i,k)*B(k,J);

end

If we have tree along each row/column, then
log(s) messages per broadcast

o + Bn?/s? per message

2log(s)(as + Bn?/s) total communication
Compare to 1D ring: (p — 1)a + (1 — 1/p)?p

v

v

v

v

Note: Same ideas work with block size b < n/s



Cannon’s algorithm

[Coo C01} _ {AooBoo A01B11] . [/%1310 AooBo1]
Cio Ci4 A11Bio  A10Bo1 A10Boo  A11Bi1

Idea: Reindex products in block matrix multiply

p—1
C(i.j) =Y Ali, k)B(k.J)
k=0

p—1
=> A(i,k+i+j mod p)B(k+i+j modp,))
k=0

For a fixed k, a given block of A (or B) is needed for
contribution to exactly one C(i, j).



Cannon’s algorithm

% Move A(i,Jj) to A(i,i+3)
for 1 = 0 to s-1

cycle A(i,:) left by i
% Move B(i, j) to B(i+t+3j, J)
for 3 = 0 to s-1

cycle B(:,7J) up by J

for k = 0 to s-1
in parallel;
C(i,3) = C(i,3) + A(i,3)*B(i,9);
cycle A(:,1) left by 1
cycle B(:,3) up by 1



Cost of Cannon

v

Assume 2D torus topology

Initial cyclic shifts: < s messages each (< 2s total)

For each phase: 2 messages each (2s total)

Each message is size n?/s?

Communication cost: 4s(a + fn?/s?) = 4(as + Bn?/s)
This communication cost is optimal!

... but SUMMA is simpler, more flexible, almost as good

v

v

v

v

v



Speedup and efficiency

Recall

Speedup := tseria]/ tparal]e]
Efficiency := Speedup/p

Assuming no overlap of communication and computation,
efficiencies are

1Dlayout (1+ 0 ()"
SUMMA (1 +o(f,§’gp))_1
Cannon ( +O(£>)_1



Review: Parallel matmul

v

Basic operation: C = C + AB

Computation: 2n® flops

Goal: 2n%/p flops per processor, minimal communication
» Two main contenders: SUMMA and Cannon

v

v



Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);
end

Parallel: Assume p = s? processors, block s x s matrices.
Fora 2 x 2 example:

[Coo C01} _ {AooBoo A00301] n [/%1310 Ao1B11]
Cio Ci4 A10Boo  A10Bo1 A11Bio  A11Bi1

» Processor for each (i,j) = parallel work for each k!

» Note everyone in row i uses A(/, k) at once,
and everyone in row j uses B(k, j) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each 1 in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col

On processor (i,3), C(i,3j) += A(i,k)*B(k,J);

end

If we have tree along each row/column, then
log(s) messages per broadcast

o + Bn?/s? per message

2log(s)(as + Bn?/s) total communication
Compare to 1D ring: (p — 1)a + (1 — 1/p)?p

v

v

v

v

Note: Same ideas work with block size b < n/s



SUMMA




SUMMA




SUMMA




Parallel outer product (SUMMA)

If we have tree along each row/column, then
» log(s) messages per broadcast
» o+ Bn?/s? per message
» 2log(s)(as + pn?/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?



