
Dense Linear Algebra

David Bindel

20 Oct 2015



Matrix vector product
Simple y = Ax involves two indices

yi =
∑

j

Aijxj

Can organize around either one:

% Row-oriented
for i = 1:n
y(i) = A(i,:)*x;

end

% Col-oriented
y = 0;
for j = 1:n
y = y + A(:,j)*x(j);

end

... or deal with index space in other ways!



Parallel matvec: 1D row-blocked

yA x

Receive broadcast x0, x1, x2 into local x0, x1, x2; then

On P0: A00x0 + A01x1 + A02x2 = y0

On P1: A10x0 + A11x1 + A12x2 = y1

On P2: A20x0 + A21x1 + A22x2 = y2



Parallel matvec: 1D col-blocked

yA x

Independently compute

z(0) =

A00
A10
A20

 x0 z(1) =

A00
A10
A20

 x1 z(2) =

A00
A10
A20

 x2

and perform reduction: y = z(0) + z(1) + z(2).



Parallel matvec: 2D blocked

yA x

I Involves broadcast and reduction
I ... but with subsets of processors



Parallel matvec: 2D blocked

Broadcast x0, x1 to local copies x0, x1 at P0 and P2
Broadcast x2, x3 to local copies x2, x3 at P1 and P3
In parallel, compute[

A00 A01
A10 A11

] [
x0
x1

]
=

[
z(0)

0
z(0)

1

] [
A02 A03
A12 A13

] [
x2
x3

]
=

[
z(1)

0
z(1)

1

]
[
A20 A21
A30 A31

] [
x0
x1

]
=

[
z(3)

2
z(3)

3

] [
A20 A21
A30 A31

] [
x0
x1

]
=

[
z(3)

2
z(3)

3

]

Reduce across rows:[
y0
y1

]
=

[
z(0)

0
z(0)

1

]
+

[
z(1)

0
z(1)

1

] [
y2
y3

]
=

[
z(2)

2
z(2)

3

]
+

[
z(3)

2
z(3)

3

]



Parallel matmul

I Basic operation: C = C + AB
I Computation: 2n3 flops
I Goal: 2n3/p flops per processor, minimal communication



1D layout

BC A

I Block MATLAB notation: A(:, j) means j th block column
I Processor j owns A(:, j), B(:, j), C(:, j)
I C(:, j) depends on all of A, but only B(:, j)
I How do we communicate pieces of A?



1D layout on bus (no broadcast)

BC A

I Everyone computes local contributions first
I P0 sends A(:,0) to each processor j in turn;

processor j receives, computes A(:,0)B(0, j)
I P1 sends A(:,1) to each processor j in turn;

processor j receives, computes A(:,1)B(1, j)
I P2 sends A(:,2) to each processor j in turn;

processor j receives, computes A(:,2)B(2, j)



1D layout on bus (no broadcast)

Self A(:,1) A(:,2)A(:,0)

C A B



1D layout on bus (no broadcast)

C(:,myproc) += A(:,myproc)*B(myproc,myproc)
for i = 0:p-1
for j = 0:p-1
if (i == j) continue;
if (myproc == i) i
send A(:,i) to processor j

if (myproc == j)
receive A(:,i) from i
C(:,myproc) += A(:,i)*B(i,myproc)

end
end

end

Performance model?



1D layout on bus (no broadcast)

No overlapping communications, so in a simple α− β model:
I p(p − 1) messages
I Each message involves n2/p data
I Communication cost: p(p − 1)α+ (p − 1)n2β



1D layout on ring

I Every process j can send data to j + 1 simultaneously
I Pass slices of A around the ring until everyone sees the

whole matrix (p − 1 phases).



1D layout on ring

tmp = A(myproc)
C(myproc) += tmp*B(myproc,myproc)
for j = 1 to p-1
sendrecv tmp to myproc+1 mod p,

from myproc-1 mod p
C(myproc) += tmp*B(myproc-j mod p, myproc)

Performance model?



1D layout on ring

In a simple α− β model, at each processor:
I p − 1 message sends (and simultaneous receives)
I Each message involves n2/p data
I Communication cost: (p − 1)α+ (1− 1/p)n2β



Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);

end

Parallel: Assume p = s2 processors, block s × s matrices.
For a 2× 2 example:[

C00 C01
C10 C11

]
=

[
A00B00 A00B01
A10B00 A10B01

]
+

[
A01B10 A01B11
A11B10 A11B11

]

I Processor for each (i , j) =⇒ parallel work for each k !
I Note everyone in row i uses A(i , k) at once,

and everyone in row j uses B(k , j) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each i in parallel
broadcast A(i,k) to row

for each j in parallel
broadcast A(k,j) to col

On processor (i,j), C(i,j) += A(i,k)*B(k,j);
end

If we have tree along each row/column, then
I log(s) messages per broadcast
I α+ βn2/s2 per message
I 2 log(s)(αs + βn2/s) total communication
I Compare to 1D ring: (p − 1)α+ (1− 1/p)n2β

Note: Same ideas work with block size b < n/s



Cannon’s algorithm

[
C00 C01
C10 C11

]
=

[
A00B00 A01B11
A11B10 A10B01

]
+

[
A01B10 A00B01
A10B00 A11B11

]

Idea: Reindex products in block matrix multiply

C(i , j) =
p−1∑
k=0

A(i , k)B(k , j)

=

p−1∑
k=0

A(i , k + i + j mod p) B(k + i + j mod p, j)

For a fixed k , a given block of A (or B) is needed for
contribution to exactly one C(i , j).



Cannon’s algorithm

% Move A(i,j) to A(i,i+j)
for i = 0 to s-1
cycle A(i,:) left by i

% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
cycle B(:,j) up by j

for k = 0 to s-1
in parallel;
C(i,j) = C(i,j) + A(i,j)*B(i,j);

cycle A(:,i) left by 1
cycle B(:,j) up by 1



Cost of Cannon

I Assume 2D torus topology
I Initial cyclic shifts: ≤ s messages each (≤ 2s total)
I For each phase: 2 messages each (2s total)
I Each message is size n2/s2

I Communication cost: 4s(α+ βn2/s2) = 4(αs + βn2/s)
I This communication cost is optimal!

... but SUMMA is simpler, more flexible, almost as good



Speedup and efficiency

Recall

Speedup := tserial/tparallel

Efficiency := Speedup/p

Assuming no overlap of communication and computation,
efficiencies are

1D layout
(
1 + O

(p
n

))−1

SUMMA
(

1 + O
(√

p log p
n

))−1

Cannon
(

1 + O
(√

p
n

))−1



Review: Parallel matmul

I Basic operation: C = C + AB
I Computation: 2n3 flops
I Goal: 2n3/p flops per processor, minimal communication
I Two main contenders: SUMMA and Cannon



Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);

end

Parallel: Assume p = s2 processors, block s × s matrices.
For a 2× 2 example:[

C00 C01
C10 C11

]
=

[
A00B00 A00B01
A10B00 A10B01

]
+

[
A01B10 A01B11
A11B10 A11B11

]

I Processor for each (i , j) =⇒ parallel work for each k !
I Note everyone in row i uses A(i , k) at once,

and everyone in row j uses B(k , j) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each i in parallel
broadcast A(i,k) to row

for each j in parallel
broadcast A(k,j) to col

On processor (i,j), C(i,j) += A(i,k)*B(k,j);
end

If we have tree along each row/column, then
I log(s) messages per broadcast
I α+ βn2/s2 per message
I 2 log(s)(αs + βn2/s) total communication
I Compare to 1D ring: (p − 1)α+ (1− 1/p)n2β

Note: Same ideas work with block size b < n/s



SUMMA



SUMMA



SUMMA



Parallel outer product (SUMMA)

If we have tree along each row/column, then
I log(s) messages per broadcast
I α+ βn2/s2 per message
I 2 log(s)(αs + βn2/s) total communication

Assuming communication and computation can potentially
overlap completely, what does the speedup curve look like?


