Dense Linear Algebra

David Bindel

20 Oct 2015

Logistics

- Totient issues fixed? May still be some issues:
 - Login issues working on it
 - Intermittent node non-responsiveness working on it
- You should have finished mid-project report for water
 - Two pieces to performance: single-core and parallel
 - Single-core issues mostly related to vectorization
 - Parallelism and cache locality from tiling
 - Scaling studies, performance models are also good!

- Next assignment (All-Pairs Shortest Path) is up
 - Official release is Oct 22
- You should also be thinking of final projects
 - ► Talk to each other, use Piazza, etc
 - Next week is good for this

- This week: dense linear algebra
 - Today: Matrix multiply as building block
 - Next time: Building parallel matrix multiply

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Next week: Bindel traveling
- Week after: sparse linear algebra

Numerical linear algebra in a nutshell

Basic problems

- Linear systems: Ax = b
- Least squares: minimize $||Ax b||_2^2$
- Eigenvalues: $Ax = \lambda x$
- Basic paradigm: matrix factorization

•
$$A = LU, A = LL^7$$

•
$$A = QR$$

•
$$A = V \wedge V^{-1}, A = Q T Q^7$$

•
$$A = U\Sigma V^T$$

• Factorization \equiv switch to basis that makes problem easy

Numerical linear algebra in a nutshell

Two flavors: dense and sparse

- Dense == common structures, no complicated indexing
 - General dense (all entries nonzero)
 - Banded (zero below/above some diagonal)
 - Symmetric/Hermitian
 - Standard, robust algorithms (LAPACK)
- Sparse == stuff not stored in dense form!
 - Maybe few nonzeros (e.g. compressed sparse row formats)

- May be implicit (e.g. via finite differencing)
- May be "dense", but with compact repn (e.g. via FFT)
- Most algorithms are iterative; wider variety, more subtle
- Build on dense ideas

History

BLAS 1 (1973–1977)

- Standard library of 15 ops (mostly) on vectors
 - Up to four versions of each: S/D/C/Z
 - Example: DAXPY
 - Double precision (real)
 - Computes Ax + y
 - Goals
 - Raise level of programming abstraction
 - Robust implementation (e.g. avoid over/underflow)
 - Portable interface, efficient machine-specific implementation

- BLAS 1 == $O(n^1)$ ops on $O(n^1)$ data
- Used in LINPACK (and EISPACK?)

History

BLAS 2 (1984–1986)

- Standard library of 25 ops (mostly) on matrix/vector pairs
 - Different data types and matrix types
 - Example: DGEMV
 - Double precision
 - GEneral matrix
 - Matrix-Vector product
- Goals
 - BLAS1 insufficient
 - BLAS2 for better vectorization (when vector machines roamed)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• BLAS2 == $O(n^2)$ ops on $O(n^2)$ data

History

BLAS 3 (1987-1988)

Standard library of 9 ops (mostly) on matrix/matrix

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Different data types and matrix types
- Example: DGEMM
 - Double precision
 - GEneral matrix
 - Matrix-Matrix product
- BLAS3 == $O(n^3)$ ops on $O(n^2)$ data

Goals

Efficient cache utilization!

BLAS goes on

- http://www.netlib.org/blas
- CBLAS interface standardized
- Lots of implementations (MKL, Veclib, ATLAS, Goto, ...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Still new developments (XBLAS, tuning for GPUs, ...)

Why BLAS?

Consider Gaussian elimination.

LU for 2 \times 2:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ c/a & 1 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d - bc/a \end{bmatrix}$$

Block elimination

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}$$

Block LU

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{12} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{12}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Why BLAS?

Block LU $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{12} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{12}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$

Think of *A* as $k \times k$, *k* moderate:

```
[L11,U11] = small_lu(A);
U12 = L11\B;
L12 = C/U11;
S = D-L21*U12;
[L22,U22] = lu(S);
```

Three level-3 BLAS calls!

- Two triangular solves
- One rank-k update

- % Small block LU
 % Triangular solve
- 8 "
- % Rank m update
- % Finish factoring

LAPACK

LAPACK (1989-present):

http://www.netlib.org/lapack

- Supercedes earlier LINPACK and EISPACK
- High performance through BLAS
 - Parallel to the extent BLAS are parallel (on SMP)
 - Linear systems and least squares are nearly 100% BLAS 3

- Eigenproblems, SVD only about 50% BLAS 3
- Careful error bounds on everything
- Lots of variants for different structures

ScaLAPACK

ScaLAPACK (1995-present):

http://www.netlib.org/scalapack

- MPI implementations
- Only a small subset of LAPACK functionality

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PLASMA and MAGMA

PLASMA and MAGMA (2008–present):

- Parallel LA Software for Multicore Architectures
 - Target: Shared memory multiprocessors
 - Stacks on LAPACK/BLAS interfaces
 - Tile algorithms, tile data layout, dynamic scheduling
 - Other algorithmic ideas, too (randomization, etc)
- Matrix Algebra for GPU and Multicore Architectures
 - Target: CUDA, OpenCL, Xeon Phi
 - Still stacks (e.g. on CUDA BLAS)
 - Again: tile algorithms + data, dynamic scheduling
 - Mixed precision algorithms (+ iterative refinement)

(日) (日) (日) (日) (日) (日) (日)

Dist memory: PaRSEC / DPLASMA

Reminder: Evolution of LU

On board...

Find pivot

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Swap pivot row

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Update within block

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Delayed update (at end of block)

Big idea

- Delayed update strategy lets us do LU fast
 - Could have also delayed application of pivots
- Same idea with other one-sided factorizations (QR)
- Can get decent multi-core speedup with parallel BLAS! ... assuming *n* sufficiently large.

There are still some issues left over (block size? pivoting?)...

Explicit parallelization of GE

What to do:

- Decompose into work chunks
- Assign work to threads in a balanced way
- Orchestrate the communication and synchronization

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Map which processors execute which threads

1D column blocked: bad load balance

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1D column cyclic: hard to use BLAS2/3

1D column block cyclic: block column factorization a bottleneck

Block skewed: indexing gets messy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2D block cyclic:

æ

- 1D column blocked: bad load balance
- 1D column cyclic: hard to use BLAS2/3
- 1D column block cyclic: factoring column is a bottleneck

- Block skewed (a la Cannon Thurs): just complicated
- > 2D row/column block: bad load balance
- 2D row/column block cyclic: win!

Find pivot (column broadcast)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Swap pivot row within block column + broadcast pivot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Update within block column

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

At end of block, broadcast swap info along rows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Apply all row swaps to other columns

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Broadcast block L_{II} right

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Update remainder of block row

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Broadcast rest of block row down

Broadcast rest of block col right

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Update of trailing submatrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Communication costs:

- Lower bound: $O(n^2/\sqrt{P})$ words, $O(\sqrt{P})$ messages
- ScaLAPACK:
 - $O(n^2 \log P / \sqrt{P})$ words sent
 - O(n log p) messages
 - Problem: reduction to find pivot in each column
- Recent research on stable variants without partial pivoting

What if you don't care about dense Gaussian elimination? Let's review some ideas in a different setting...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Floyd-Warshall

Goal: Find shortest path lengths between all node pairs.

Idea: Dynamic programming! Define

 $d_{ij}^{(k)}$ = shortest path *i* to *j* with intermediates in {1,...,k}.

Then

$$d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

and $d_{ij}^{(n)}$ is the desired shortest path length.

The same and different

Floyd's algorithm for all-pairs shortest paths:

Unpivoted Gaussian elimination (overwriting A):

```
for k=1:n
  for i = k+1:n
    A(i,k) = A(i,k) / A(k,k);
    for j = k+1:n
        A(i,j) = A(i,j)-A(i,k)*A(k,j);
```

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The same and different

- The same: $O(n^3)$ time, $O(n^2)$ space
- The same: can't move k loop (data dependencies)
 - ... at least, can't without care!
 - Different from matrix multiplication

• The same:
$$x_{ij}^{(k)} = f\left(x_{ij}^{(k-1)}, g\left(x_{ik}^{(k-1)}, x_{kj}^{(k-1)}\right)\right)$$

- Same basic dependency pattern in updates!
- Similar algebraic relations satisfied
- Different: Update to full matrix vs trailing submatrix

How would we

Write a cache-efficient (blocked) serial implementation?

(ロ) (同) (三) (三) (三) (○) (○)

Write a message-passing parallel implementation?

The full picture could make a fun class project...

Next up: Sparse linear algebra and iterative solvers!

