
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 14: Monday, May 2

Logistics

• Welcome to the last week of classes!

• Project 3 is due Friday, May 6.

• Final is Friday, May 13. Lecture Wednesday will be a review, and
section this week will be devoted to practice exam problems. Come
with questions.

Problem du jour

What is the expected output of the following code?

X = 20∗(rand(1,N)−0.5);
fX = exp(−X.ˆ2/2);
gX = 1/20;
lX = fX./gX;
result = mean(lX);
errbar = std(lX)/sqrt(N);

Answer: The result should converge to E[l(X)] where X is uniform on
[−10, 10] and l(x) = 20 exp(−x2/2). The probability density function for X
is

g(x) =

{
1/20, −10 ≤ x ≤ 10

0, otherwise.

and the expected value is

E[l(X)] =

∫
R
l(x)g(x) dx =

∫ 20

−20
exp(−x2/2) dx,

which should be quite close to
√

2π. We’ve created some bias by truncating
at ±10, but this error is nowhere near as large as the statistical error due to
Monte Carlo.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Variance reduction

The problem above is a simple example of Monte Carlo integration. We now
want to see how to make this simple example more efficient by reducing the
variance of the estimator. We will approach this in a few different ways.

Importance sampling

Let us consider the computation

√
2π = 2

∫ ∞
0

exp(−x2/2) dx.

Using the idea of the problem du jour, we could estimate
√

2π by drawing
uniform samples on [0, L] for L large enough. But this estimator has rather
high variance, and the variance gets larger the larger L is. This is intuitive
in that most of the sample points don’t really matter to the computation,
since exp(−x2/2) decays very quickly away from zero.

The integrand exp(−x2/2) is largest near the origin, so we get the most
contribution to our integral when we have samples near zero. Therefore, it
makes sense to use a method that samples more frequently near the origin,
rather than sampling uniformly over some large range of x values

√
2π = 2

∫ ∞
0

exp(−x2/2)

exp(−x)
exp(−x) dx = 2E[exp(−X2/2)/ exp(−X)]

where X is an exponential random variable.

% lec27zmean2(N)
%
% Compute sqrt(2∗pi) by Monte Carlo. Use importance sampling.

function [result, err] = lec27zmean2(N)

if nargin < 1, N = 1000; end

Y = −log(rand(1,N));
fY = exp(−Y.ˆ2/2);
gY = exp(−Y)/2;
lY = fY./gY;

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

result = mean(lY);
err = std(lY)/sqrt(N);

Control variates

I want to compute the expectation of l(x) = exp(x − x2/2), but perhaps
I’ve decided its too hard. But I know that most of the interesting behavior
is near the origin, so perhaps I can approximate l(x) by a polynomial over
some interval close to zero. Let’s try just interpolating by a quadratic at
x = 0, x = 1, and x = 2, and discarding everything past x = 2:

h(x) =

{√
e− (

√
e− 1)(x− 1)2, x ∈ [0, 2]

0, otherwise
.

While h(X) is not identical to l(X), the two random variables surely are
correlated. Furthermore, we can compute E[h(X)] analytically; a somewhat
tedious calculus exercise yields

E[h(X)] =
√
e(1− e−2)− (

√
e− 1)(1− 5e−2).

The fact that h(X) and l(X) should be correlated, together with the fact
that we can compute E[h(X)] in closed form, makes h(X) an ideal candidate
to serve as a control variate with which we can construct a better estimator,
as we shall now see.

First, note that

E[l(X)] = E[l(X)− ch(X)] + cE[h(X)].

So l̂c(X) = l(X)− ch(X) + cE[h(X)] has the same expected value that l(X)
does; but

var[l̂c(X)] = var[l(X)]− 2c cov[l(X), h(X)] + c2 var[h(X)].

If we choose c∗ = cov[l(X), h(X)]/ var[h(X)], we have

var[l̂c∗(X)] = var[l(X)]
(
1− corr[l(X), h(X)]2

)
.

If l(X) and h(X) are highly correlated, then l̂c∗(X) may have a much lower
variance than l(X). Of course, computing the covariance analytically is hard,
but we can always do it numerically.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

% lec27zmean4(N)
%
% Compute sqrt(2∗pi) by Monte Carlo. Use importance sampling +
% a control variate .

function [result, err] = lec27zmean4(N)

if nargin < 1, N = 1000; end

Y = −log(rand(1,N));
fY = exp(−Y.ˆ2/2);
gY = exp(−Y)/2;
lY = fY./gY;

hY = (sqrt(e)−(sqrt(e)−1)∗(Y−1).ˆ2).∗double(Y<2);
EhY = (sqrt(e)∗(1−eˆ−2) − (sqrt(e)−1)∗(1−5∗eˆ−2));

cs = −sum((lY−mean(lY)) .∗ (hY−EhY))/sum((hY−EhY).ˆ2);
W = lY + cs∗(hY−EhY);
result = mean(W)
err = std(W)/sqrt(N);

Antithetic variables

Now let’s turn to the problem of computing π/4 by throwing darts at [0, 1]2

and seeing what fraction lie inside the unit circle. Note that if (Xi, Yi) is a
uniform random sample from the square, then (1−Xi, 1−Yi) is a correlated
sample. It turns out that if φ is the indicator for the unit circle, then φ(Xi, Yi)
and φ(1−Xi, 1− Yi) have negative covariance; this makes sense, since only
one of them can be outside the unit circle (though both could be the same).
Therefore, the estimator φ(X, Y)/2 + φ(1 − X, 1 − Y)/2 actually has lower
variance than φ(X, Y). This is the method of antithetic variables.

% lec27pi mc(N)
%
% Compute pi by Monte Carlo. Use antithetic variables.

function [result, err] = lec27pi mc2(N,d)

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

if nargin < 1, N = 1000; end
if nargin < 2, d = 2; end

% Version 2: Antithetic variates
XY = rand(d,N);
XY2 = 1−XY;
trials1 = double(sum(XY.ˆ2,1)<1);
trials2 = double(sum(XY2.ˆ2,1)<1);
trials = (trials1+trials2)/2;
result = mean(trials);
shat = std(trials);
err = shat/sqrt(N);

A concluding note

I will not ask you about variance reduction on the final exam, but if you
ever find yourself using Monte Carlo methods, it is worth knowing the basic
ideas of these methods. Much of the sophistication in getting Monte Carlo
methods to run fast is in finding good variance reduction techniques.

Accelerating another method to compute π

Recall way back at the beginning of the semester, we discussed a way of
computing the semiperimeters sk of 2k-gons as a way of computing π. This
turned out to be equivalent to finding a recurrence to compute

sk = 2k sin(2−kπ),

and when we Taylor expand the sine function, we have

sk = π + C14
−k + C216−k + C364−k + . . .

where C1, C2, C3, etc. are constants that do not depend on k. The most
straightforward estimate, π ≈ sk, therefore has a predictable error that
is roughly proportional to 4−k. But what if we tried to combine several
semiperimeters to get a better estimate?

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Let’s start simple, and try taking a linear combination of sk and sk+1:

αsk + βsk+1 = (α + β)π + (4α + β)C14
−k−1 +O(16−k).

If we choose α = −1/3 and β = 4/3, we solve the linear system α + β = 1
and 4α + β = 0. Therefore,

4sk+1 − sk
3

= π +O(16−k).

If we take an appropriate combination of sk+2, sk+1, and sk, we can do
even better, getting an approximation with error O(64−k). This is linear
convergence, but it is ferociously fast nonetheless.

