
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 13: Wednesday, Apr 27

Logistics

• Project 3 is due Friday, May 6.

• Final exam is Friday, May 13.

Problem du jour

Suppose that each homework problem I attempt is an independent Bernoulli
random variable, with probability of success equal to 0.8. I’m in a class
with seven homeworks of five points each, and the lowest of these grades is
dropped. What is my expected average score for the semester?

Answer: We can do this in closed form, but it’s easier to set up the
calculation using brute force Monte Carlo:

n = 10000;
for k = 1:n

sample = sort(sum(double(rand(7,5) <= 0.8),2));
score(k) = sum(sample(2:end))/6;

end
mean(score);
fprintf(’%f (%.1e)\n’, mean(score), std(score)/sqrt(n));

The answer is that the average score will be a bit over 4.2 (84%).
I would usually do a Monte Carlo computation in a case like this even if

I worked out the exact solution, just so that I would have a sanity check on
my algebra.

Random number generation

At the end of the last lecture, we were just starting to touch on the problem
of drawing (pseudo)random samples from different distributions. Recall that
we are going to assume that we have a reasonably good method for producing
samples from the uniform distribution on (0, 1). The question in how we draw
samples from other distributions. I know a handful of tricks for deriving new
samplers; let’s investigate them by example.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Bernoulli random variables

A Bernoulli random variable generates 1 (success) with probability p and
0 (failure) with probability 1 − p. In the problem du jour, we implicitly
assumed that each question was a Bernoulli trial with p = 0.8. Generating a
Bernoulli trial from a uniform sampler is relatively simple; in Matlab, we
might write

function result = bernoulli(p)

U = rand(1); % Generate a sample in Unif(0,1)
if U < p

result = 1;
else

result = 0;
end

Note that P{U < p} =
∫ p
0

1 du = p, so this sampler certainly has the right
properties. Also notice that in my pseudocode for the problem du jour,
I generated 35 Bernoulli trials simultaneously using one call to rand. The
random number generator in Matlab has a fair amount of overhead per call,
so you really want to generate random variables in reasonably large blocks if
you can.

The project 3 code uses Bernoulli trials in the Russian roulette algorithm
for deciding when to terminate a trajectory (or group of trajectories).

Exponential random variables

An exponential random variable with rate parameter λ has the density func-
tion

f(x;λ) = λe−λx, x ≥ 0

and the cumulative distribution function

F (x;λ) = 1− e−λx.

Now, suppose that for a uniform sample U we generateX to satisfy F (X;λ) =
U , i.e.

X = −1

λ
log(1− U).

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Then

P{X ≤ x} = P{F (X;λ) ≤ F (x;λ)} = P{U ≤ F (x;λ)} = F (x;λ).

This inverse transformation trick works whenever we have a simple way to
compute a cumulative distribution function.

The step sizes in the Monte Carlo simulator in project 3 are exponential
random variables drawn using exactly this trick.

Sampling from an empirical distribution

Suppose we have a histogram of results from some large number of real-world
experiments. If the outcomes of the experiments are integers in the range
from 1 to m, we can define a probability mass function where p(j) is the
fraction of the experiments that had outcome j. There is a corresponding
cumulative distribution function F (j) =

∑j
i=1 p(j) that goes from F (0) = 0

to F (m) = 1. To draw a sample from this distribution, we would again
use the inverse transformation trick: draw U uniform between 0 and 1, then
choose the smallest j such that F (j) > U .

Sampling from the unit disk

Suppose we want to draw (X, Y) uniformly at random from the interior of
the unit circle. One way to do this is with polar coordinates: if U1 and U2

are uniform on (0, 1), we can generate Θ = 2πU1 and R =
√
U2 (the cdf for

R should be FR(r) = r2 on [0, 1), so we can use the inverse transformation
trick from above). Then we could compute (X, Y) = R(sin Θ, cos Θ). But
suppose we didn’t know this, or suppose that we’re thinking of the disk as
a proxy for some more complicated set sitting inside the unit square. What
other tactics could we use?

One simple idea is rejection sampling. The basic idea is

• Draw a sample from an easy distribution g. In this case, we might use
the uniform distribution on [−1, 1]2 (i.e. g(x, y) = 1/4 on [−1, 1]2 and
zero elsewhere).

• Accept the sample with probability that is a function of the sample
values. In this case, we have

p(x, y) =

{
1, x2 + y2 < 1

0, otherwise.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

In this case, we accept with probability one if X2 + Y 2 < 1 and with
probability zero otherwise.

We then keep repeating until acceptance. The probability density associated
with the accepted values is then

f(x, y) =
1

Z
g(x, y)p(x, y)

where Z is some normalization constant chosen so that the acceptance prob-
ability is one. In our case, this gives us a density that is a nonzero constant
on the circle and zero elsewhere, which is what we wanted.

A more geometric way of seeing rejection sampling is that we fit some
shape that completely surrounds the graph of our density function (in this
case, that shape is a three-dimensional box). We then draw uniformly at
random from within that shape, and discard the samples that do not fall
under the graph of the density function. The probability that we succeed in
any given trial is equal to the fraction of the area inside the shape that lies
underneath the graph of the density function.

Distribution with an exponential tail

Let’s look at another example of rejection sampling. Suppose I wanted to
sample from f(x) = C−1g(x)e−x on [0,∞), where C is some (possibly un-
known) normalization constant and 0 < g(x) < G. Then I could compute
samples from f using the following procedure:

p = 0; % p = probability of accepting current X
while (rand(1) > p) % while we fail to accept

X = −log(rand(1)); % X is an exponential random variable
p = g(X)/G; % p is proportional to g(X)

end

The probability of success in this problem is the ratio of the area under the
histogram for f to the area under Ge−x, or 1/G. The expected number of
rounds until success is therefore G.

