
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 13: Monday, Apr 25

Logistics

• HW 7 is extended to the morning of 4/27 (in class or by CMS)

• Project 3 is due Friday, May 6.

Quick review of probability

Monte Carlo methods involve computations done with the help of random
numbers. In order to reason about Monte Carlo methods, we need a little
background in probability theory. I assume that you’ve seen some probability
theory before, but let’s quickly review some basics.

When we do an experiment, there are a variety of possible outcomes that
could result. An event is a set of possible outcomes that we might care about.
Mathematically, we might describe the experiment by the random variable
X. The probability that the outcome of the experiment is in an event A is
P{X ∈ A}. The probability maps events (sets) to numbers in [0, 1]; there
are some axioms, which I will leave you to look up in a more comperhensive
text. For the moment, let’s just concentrate on probabilities for the simplest
cases. For a discrete random variable, we write

P{X ∈ A} =
∑
x∈A

pX(x)

where pX is a probability mass function (pmf) which is everywhere between
zero and one and which sums to one when the sum is taken over all possible
outcomes. Similarly, for a continuous random variable, we write

P{X ∈ A} =

∫
A

fX(x) dx

where fX(x) is a probability density function (pdf). When the outcomes
are integers or real numbers, we sometimes also care about the cumulative
distribution function (cdf)

FX(x) = P{X ≤ x}



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

which we can get by summing the mass function or integrating the density
function. The cdf is a monotonically increasing functions with limiting values
limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

The expected value of a function g of a random variable X is

E[X] =

∫
Ω

g(x)fX(x) dx;

in the discrete case, the integral is replaced by a sum. The variance of X is

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2.

The standard deviation is the square root of the variance, and we can think
of it as a measure of how far, on average, X is from its expected value.

Random variables X and Y are independent if for general choices of events
A and B we have P ({X ∈ A} ∩ {Y ∈ B}) = P{X ∈ A} · P{Y ∈ B}. In
simple Monte Carlo calculations, we typically run repeated experiments that
are independent and identically distributed (i.i.d.). If X1, X2, . . . , XN are
independently drawn from the same distribution, then the sample mean

X̄ =
1

N

N∑
j=1

Xj

is a random variable that is approximately normal (Gaussian) with mean
E[X] and variance Var[X]/

√
N .

The Monte Carlo idea

Monte Carlo methods use random numbers to compute something that is
not random. In the abstract, we write some quantity of interest A as

A = Ef [V (X)],

where X is a collection of random variables whose joint distribution is f
(sometimes written X ∼ f) and V (x) is some quantity determined by X.
A Monte Carlo code generates many samples Xk, k = 1, . . . , N , from the
distribution f , and then computes the approximate answer

A ≈ ÂN =
1

N

N∑
k=1

V (Xk).



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

If the samples Xk are independent, the error is roughly σ/
√
N , where σ2 =

varf (V (X)) is the variance of the random variable V (X). If we don’t know
the variance of V (X) analytically (which is typically the case), we can use
the estimate

σ̂2
N =

1

N − 1

N∑
k=1

(V (Xk)− A)2.

Sometimes we’re sloppy and divide by N ; if N is small enough that this
makes a significant data, we ideally should run more experiments! When
we approximate A by ÂN , we call σ̂N an “error bar”, since it describes a
measure of the statistical error in our problem (the radius of a symmetric
67% confidence interval). The error bars are not the same as error bounds,
of course, but they are useful for reasoning about the order of magnitude of
the errors we expect to see.

Because statistical error is O(1/
√
N), it tends to be very expensive to

get high accuracy with Monte Carlo methods. For some problems, though,
particularly those in high dimensions, Monte Carlo methods are the most
practical choice. The basic idea of Monte Carlo is simple, if expensive; much
of the cleverness in Monte Carlo methods goes into variance reduction, which
at least reduces the constant in the O(1/

√
N) expression. The good side of

statistical error is that it is usually at least possible to estimate its order of
magnitude (via error bars).

Examples

Monte Carlo methods have relatively low accuracy compared to deterministic
methods, but they are particularly useful in a few cases:

1. Some problems are naturally probabilistic, and a Monte Carlo method
may be an almost-direct translation of the problem statement. If we
don’t mind low accuracy, this can be a very effective way to get a feel
for the answer before diving into a more exact calculation (which we
might have to spend more time debugging). The standard advice is
to only use Monte Carlo for things that cannot be well managed by
deterministic methods; this sort of exploratory computation might be
an exception.

2. The cost of deterministic methods often grows exponentially with the
dimension of the ambient space. This causes a problem when we’re



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

interested in even moderately high dimensions. For computing integrals
in high-dimensional spaces (including the sort of position-and-direction
coordinates we need to describe particles in scattering problems like the
one in HW 3), a Monte Carlo method is often appropriate.

3. Sometimes we are driven by data, and the data that we have is too huge
to process all at once. Sampling the data by Monte Carlo methods
can be a very effective approach in this case for the same reason it
is effective for high-dimensional problems: the cost depends on the
number of samples we draw, and not on the size or dimension of the
underlying thing from which our samples are drawn.

Random number generation

In order to run Monte Carlo simulations, we need a source of pseudo-random
numbers. One could teach an entire class on how to produce pseudo-random
number generators, but we will simply state that it is a tricky business and
you should use a well-designed library routine for your day-to-day draws of
random bits or of numbers that are uniformly distributed in the interval [0, 1].
In Matlab, you can use rand to get such uniformly distributed random
samples (and randn to get samples from a standard normal distribution). For
our purposes, we simply need to know how to turn such uniform sampling
procedures into methods to sample from other distributions. We will take
up a few strategies for this in the next lecture.


