
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 12: Monday, Apr 18

Logistics

• HW 6 is due at 11:59 tonight.

• HW 7 is posted, and will be due in class on 4/25.

• The prelim is graded. An analysis and rubric are on CMS.

Problem du jour

For implicit methods like backward Euler or the trapezoidal rule, we need to
solve a nonlinear equation at each update. For backward Euler, for example,
we have

yn+1 − hf(yn+1)− yn = 0.

What is Newton’s iteration for computing yn+1 given yn?
Answer: The Newton iteration is

ynewn+1 = yoldn+1 − (I − hf ′(yold))−1(yoldn+1 − hf(yoldn+1)− yn).

We could also do something less expensive by computing and factoring an
approximation to the Jacobian once and re-using it until the convergence
becomes too slow. If you use Matlab’s implicit ODE solvers, you can specify
the Jacobian (or, if specifying the Jacobian directly is expensive, you can
specify the sparsity pattern of the Jacobian).

For a non-stiff problem where f ′ is not too large, note that we could also
use fixed point iteration:

ynewn+1 = yn + hf(yoldn+1).

In order to do Newton, fixed point, or any other iteration, though, we need
a good initial guess. But we can get a good initial guess by polynomial
interpolation through previous points. In the context of ODE solvers, this is
called a predictor, which we pair together with a corrector to get the implicit
method.
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An aside: higher-order differential equations

So far, we have been talking about first-order equations. It is worth spending
a moment reminding ourselves how to convert higher-order systems to first-
order form. For example,

my′′ + by′ + ky = f(t)

becomes [
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]′
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More generally, we can always convert high-order equations to first-order
form by introducing auxiliary variables. However, it is sometimes better to
recognize that higher-order differential equations are special and treat them
directly rather than converting them to the more general form. This is done,
for example, in the Newmark family of methods commonly used to time-step
finite element simulations (which are second-order in time).

The Runge-Kutta concept

Runge-Kutta methods evaluate f(t, y) multiple times in order to get higher
order accuracy. For example, the classical Runge-Kutta scheme is
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K3 = f (tn + h, yn + hK2)

yn+1 = yn +
h

6
(K0 + 2K1 + 2K2 + K3) .

Note that if f is a function of time alone, this is simply Simpson’s rule. This
is no accident.

Runge-Kutta methods are frequently used in pairs where a high-order
method and a lower-order method can be computed with the same evalua-
tions. Perhaps the most popular such methods are the Fehlberg 4(5) and
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Dormand-Prince 4(5) pairs — the Matlab code ode45 uses the Dormand-
Prince pair. The difference between the two methods is then used as an
estimate of the local error in the lower-order method. If a local error esti-
mate seems too large, it is natural to try again with a shorter step based on
an asymptotic expansion of the error. This method of step control works well
on many problems in practice, but it is not foolproof (as we will see in HW
7). For example, in some settings the adaptive error control may suggest a
time step which is fine for local error, but terrible for stability.

Adaptive time stepping routines generally use tolerances for both absolute
and relative errors. A time step is accepted if

|ei| < max (rtoli|yi|, atoli)

where rtoli and atoli are the tolerances for the ith component of the solution
vector. The error tolerances have default values (10−3 relative and 10−6

absolute), but in practice it may be a good idea to set the tolerances yourself.
In principle, comparing two methods gives us an error estimate only for

the lower-order method. However, one often takes a step with the higher-
order method (at least for non-stiff problems). This cheat works well in
practice, but we use the dignified-sound name of local extrapolation to dodge
awkward questions about its mathematical legitimacy.

There are a bewildering variety of Runge-Kutta methods. Some are ex-
plicit, others are implicit. Some preserve interesting structural properties.
Some are based on equally-spaced interpolation points, others evaluate on
Gauss-Legendre points. In some, the stages can be computed one at a time;
in others, the stages all depend on each other. But these methods are beyond
the scope of the current discussion.

Matlab’s ode45

For most non-stiff problems, ode45 is a good first choice of integrators. The
basic calling sequence is

[tout, yout] = ode45(f, tspan, y0);

The function f(t,y) returns a column vector. On output, tout is a column
vector of evaluation times and yout is a matrix of solution values (one per
row). Usually, tspan has two entries: tspan = [t0 tmax]. However, we can
also specify points where we want solution values. In general, the underlying
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ODE solver does not put time steps at each of these points; instead it fills in
the values using polynomial interpolation (this is called dense output).

The ode45 function takes an optional output called opt that contains a
structure produced by odeset. Using odeset, we can set error tolerances,
put bounds on the step size, indicate to the solver that certain components
must be non-negative, look for special events, or request diagnostic output.

The multistep concept

The Runge-Kutta methods proceed from time tn to time tn+1, then stop
looking at tn. An alternative is to use not only the behavior at tn, but also
the behavior at previous times tn−1, tn−2, etc. Methods that do this are
multistep methods. Most such methods are based on linear interpolation.

For non-stiff problems, the Adams family are the most popular multi-step
methods. The k-step explicit Adams methods (or Adams-Bashforth meth-
ods) interpolate f(tj, yj) at points tn−k, . . . , tn with a degree k polynomial
p(t). Then in order to estimate

y(tn+1) = y(tn) +

∫ tn+1

tn

f(s, y(s)) ds,

one computes

yn+1 = yn +

∫ tn+1

tn

p(s) ds.

The implicit Adams methods (or Adams-Moulton methods) also interpo-
late through the unknown point. Though they are not A-stable, Adams-
Moulton methods have larger stability regions and smaller error constants
than Adams-Bashforth methods. Often, the two are used together to form
a predictor-corrector pair: predict with Adams-Bashforth, then correct to
Adams-Moulton. Because these methods are typically used for non-stiff prob-
lems, fixed point iteration often provides an adequate corrector.

With multistep methods, we can adapt not only the time step, but also
the order. Very high-order methods may be appropriate when the solution is
smooth and we want to either minimize the number of time steps or to meet
very strict accuracy requirements. The Matlab routine ode113 implements
a variable-order Adams-Bashforth-Moulton predictor-corrector solver.

The Adams methods interpolate the function values f ; the backward dif-
ferentiation formulas (BDF) instead interpolate y. The next step yn+1 is
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chosen so that the polynomial interpolating (tn−k, yn−k) through (tn+1, yn+1)
has derivative at tn+1 equal to f(tn+1, yn+1). Matlab’s solver ode15s uses
a variable-order numerical differentiation formula (a close relative of BDF).
The ode15s code would be a typical first choice for stiff problems.


