
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 12: Monday, Apr 11

Problem du jour

What is the region of absolute stability for the trapezoidal rule?

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

Answer: Applied to the test problem y′ = λy, the trapezoidal rule gives
us

yn+1 =

(
2 + hλ

2− hλ

)
yn.

Numerical solutions decay when |2 + hλ| < |2− hλ|, i.e. when Re(λ) < 0.

Logistics

• I’ve made a correction to HW 6.

• The prelim isn’t graded yet...

Euler and trapezoidal rules

So far, we have introduced three methods for solving ordinary differential
equations: forward Euler, backward Euler, and the trapezoidal rule:

yn+1 = yn + hf(tn, yn) Euler

yn+1 = yn + hf(tn+1, yn+1) Backward Euler

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) Trapezoidal

Each of these methods is consistent with the ordinary differential equation

y′ = f(t, y).

That is, if we plug solutions to the exact equation into the numerical method,
we get a small local error. For example, for forward Euler we have consistency
of order 1,

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(hn),



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

and for the trapezoidal rule we have second-order consistency

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(h2n).

Consistency + 0-stability = convergence

Each of the numerical methods we have described can be written in the form

Nhy
h = 0,

where yh denotes the numerical solution and Nh is a (nonlinear) difference
operator. If the method is consistent of order p, then the true solution gives
a small residual error as h goes to zero:

Nhy = O(hp).

We would like to conclude that since Nhy and Nhy
h are both small, y and

yh are close together. But in order to show this, we need one more property:
0-stability.

A method is zero-stable if there are constants h0 and K so for any mesh
functions xh and zh on an interval [0, T ] with h ≤ h0,

dn = |xn − zn| ≤ K

{
|x0 − z0|+ max

1≤j≤N

∣∣Nhx
h(tj)−Nhz

h(tj)
∣∣}

for 1 ≤ n ≤ N . Zero stability essentially says that the difference operators
Nh can’t become ever more singular as h → 0: they are invertible, and the
inverse is bounded by K.

If a method is consistent and zero stable, then the error at step n is

|y(tn)− yh(tn)| = |en| ≤ K max
j
|dj| = O(hp).

The proof is simply a substitution of y and yh into the definition of zero
stability. The only tricky part, in general, is to show that the method is zero
stable. Let’s at least do this for forward Euler, to see how it’s done — but
you certainly won’t be required to describe the details of this calculation on
an exam!
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We assume without loss of generality that the system is autonomous
(y′ = f(y)). We also that f is Lipschitz continuous; that is, there is some L
so that for any x and z,

|f(x)− f(z)| ≤ L|x− y|.

It turns out that Lipschitz continuity of f plays an important rule not only in
the numerical analysis of ODEs, but in the theory of existence and uniqueness
of ODEs as well: if f is not Lipschitz, then there might not be a unique
solution to the ODE. The standard example of this is u′ = 2 sign(u)

√
|u|,

which has solutions u = ±t2 that both satisfy the ODE with initial condition
u(0) = 0.

We can rearrange our description of Nh to get

xn+1 = xn + hf(xn) +Nh[x](tn)

zn+1 = zn + hf(zn) +Nh[z](tn).

Subtract the two equations and take absolute values to get

|xn+1 − zn+1| ≤ |xn − zn|+ h|f(xn)− f(zn)|+ |Nh[x](tn)−Nh[z](tn)|

Define dn = |xn − zn| and θ = maxj |Nh[x](tj) − Nh[z](tj)|. Note that by
Lipschitz continuity, |f(xn)− f(zn)| < Ldn; therefore,

dn+1 ≤ (1 + hL)dn + hθ.

Let’s look at the first few steps of this recurrence inequality:

d1 ≤ (1 + hL)d0 + hθ

d2 ≤ (1 + hL)2d0 + [(1 + hL) + 1]hθ

d3 ≤ (1 + hL)3d0 +
[
(1 + hL)2 + (1 + hL) + 1

]
hθ

In general, we have

dn ≤ (1 + hL)nd0 +

[
n−1∑
j=0

(1 + hL)j

]
hθ

≤ (1 + hL)nd0 +

[
(1 + hL)j − 1

(1 + hL)− 1

]
hθ

≤ (1 + hL)nd0 + L−1
[
(1 + hL)j − 1

]
θ
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Now note that

(1 + hL)n ≤ exp(Lnh) = exp(L(tn − t0)) ≤ exp(LT ),

where T is the length of the time interval we consider. Therefore,

dn ≤ exp(LT )d0 +
exp(LT )− 1

L
max

j
|Nh[x](tj)−Nh[z](tj)|.

While you need not remember the entire argument, there are a few points
that you should take away from this exercise:

1. The basic analysis technique is the same one we used when talking
about iterative methods for solving nonlinear equations: take two equa-
tions of the same form, subtract them, and write a recurrence for the
size of the differenc.

2. The Lipschitz continuity of f plays an important role. In particular,
if LT is large, exp(LT ) may be very inconvenient, enough so that we
have to take very small time steps to get good error results according
to our theory.

As it turns out, in practice we will usually give up on global accuracy
bounds via analyzing Lipschitz constant. Instead, we will use the same sort of
local error estimates that we described when talking about quadrature: look
at the difference between two methods that are solving the same equation
with different accuracy, and use the difference of the numerical methods as a
proxy for the error. We will discuss this strategy — and more sophisticated
Runge-Kutta and multistep methods — next week.


