
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 11: Wednesday, Apr 6

Logistics

• Prelim 2 is tomorrow, 7:30-9:30 in Upson B17

• Makeup prelim is 8:00-10:00 am in Upson 315

• Practice prelim 2 solutions are posted

Degree of an integration rule

Suppose we write

Ih[f ] =

∫ h

0

f(x) dx

Qh[f ] = h
n∑

j=1

wjf(hxj)

We have in mind that the quadrature rule Qh[f ] is supposed to approximate
Ih[f ]. What we want to show now is that we can analyze the quality of that
approximation just based on whether or not Qh[xm] = Ih[xm] for small values
of m.

Suppose Qh[f ] has degree d; that means that Qh[f ] integrates polynomials
of degree ≤ d exactly. Using Taylor’s theorem with remainder, we can write

f(x) = p(x) +
f (d+1)(ξ)

(d+ 1)!
xd+1,

where p is a degree d polynomial (the degree d Taylor approximation). Sup-
pose |f (d+1)| < M ; then we have

|Ih[f − p]| ≤ Md

(d+ 2)!
hd+2 = O(hd+2)

and

|Qh[f − p]| ≤
n∑

j=1

|wj|
Md

(d+ 1)!
hd+2 = O(hd+2).



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Therefore

|Ih[f ]−Qh[f ]| = |Ih[f − p]−Qh[p− f ]|
≤ |Ih[f − p]|+ |Qh[f − p]| = O(hd+2).

This tells us that the local truncation error (the error per panel) of a degree
d integration rule is O(hd+2); in a composite rule where there are O(h−1)
panels, we have a total error of O(hd+1).

Raising the degree

An interpolatory quadrature rule through n points has degree n − 1, and
so yields (total) error that decreases at least like O(hn), assuming that the
function in question is sufficiently smooth. In some cases, though, we know
that we get lucky and do even better. For example, the midpoint rule (n = 1)
has degree 2, and Simpson’s rule (n = 3) has degree 4. Why is this the true?

For convenience, let us consider a quadrature rule on [−1, 1]. A quadra-
ture rule with n points has degree n+s for s ≥ 0, that means it computes any
polynomial of degree up to n+ s exactly. In particular, if x1, . . . , xn are the
nodes, we can define the degree n polynomial q(x) = (x−x1) . . . (x−xn), and
our rule should be able to integrate q(x)xj exactly for 0 ≤ j ≤ s. But notice
that q(x)xj is exactly zero at each of the quadrature nodes, so the quadrature
rule returns exactly zero at each of these points. Therefore, the quadrature
rule can have degree n+ s for s ≥ 0 only if it satisfies the conditions∫ 1

−1

q(x)xj dx = 0, 0 ≤ j ≤ s.

This says that with respect to the standard inner product for functions on
[−1, 1], the polynomial q should be orthogonal to xj for 0 ≤ j ≤ s. Note that

we must have s < n, since otherwise we would have that
∫ 1

−1
q(x)2 dx was

zero.
As it happens, the Legendre polynomials Pk(x) satisfy the property that

P0(x), . . . , Pd(x) forms an orthonormal basis (with respect to the standard
inner product on [−1, 1]) for the degree d polynomials. The first few Legendre



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

polynomials are

P0(x) = 1

P1(x) = x

P2(x) = (3x2 − 1)/2,

and we can compute higher-order Legendre polynomials by a recurrence:

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x).

Interpolatory quadrature rules based on interpolation through the zeros of
Legendre polynomials are Gauss-Legendre quadrature rules. The midpoint
rule is the lowest-order such rule; the second rule is∫ 1

−1

f(x) dx ≈ f(−
√

1/3) + f(
√

1/3).

In general, n-point Gauss-Legendre quadrature rules have degree 2n− 1; the
two-point Gauss-Legendre rule has degree 3, for example.

There are a few variants on the Gaussian integration theme. One involves
constraining the nodes for computational convenience. For example, if we
insist that the interval endpoints must be quadrature nodes, we arrive at
the Gauss-Lobatto rules (degree 2n − 3). The Gauss-Kronrod rules involve
a pair consisting of an n-point Gauss quadrature rule together with a 2n+ 1
point rule that re-uses the Gauss quadrature nodes; these rules are popular
for adaptive quadrature, since the Gauss rule and the Kronrod rule can be
compared in order to get an error estimate.

Special behaviors

As is often the case, Matlab has a reasonable library of quadrature rules,
and they work terrifically well for nice, smooth integrands on bounded do-
mains. But for some problems, you have to think a little about how to set
up the integral if you want the computation to be efficient and accurate.
Examples of problematic features include:

• Non-smooth integrands (often piecewise smooth)

• Singular integrands



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

• Unbounded domains

• Oscillatory integrands

Techniques for dealing with these features include:

• Breaking up the domain of integration

• Subtracting off singularities

• Change of variables

• Integration by parts

• Weighted quadrature rules

We will discuss some examples in the next lecture.


