
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 9: Wednesday, Mar 30

Problem du jour

Suppose p(x) = a0 + a1x+ a2x
2 + a3x

3. Write a linear system for the coeffi-
cients aj such that p(0) = p0, p

′(0) = q0, p(1) = p1, p
′(1) = q1.

Answer: If we simply write the interpolation conditions in matrix form,
we have 

1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3



a0
a1
a2
a3

 =


p0
q0
p1
q1

 .
If we were a little clever, we might notice that the first two equations simply
yield a0 = p0 and a1 = q1, so we can reduce to the 2-by-2 system[

1 1
2 3

] [
a2
a3

]
=

[
p1 − p0 − q0
q1 − q0

]

Logistics

• HW 5 is due via CMS at 11:59 next Monday

• Prelim 2 is 4/7: least squares; nonlinear equations and optimization;
interpolation, numerical differentiation, and integration

Summary of last time

We spent most of the last lecture discussing three forms of polynomial inter-
polation. In each case, we were given function values {yi}di=0 at points {xi}di−1,
and we wanted to construct a degree d polynomial such that p(xi) = yi. We
do this in general by writing

p(x) =
d∑

j=0

cjφj(x),

where the functions φj(x) form a basis for the space of polynomials of de-
gree at most d. Then we use the interpolation conditions to determine the

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

coefficients cj via a linear system

Ac = y,

where Aij = φj(xi). In the last lecture, we considered three choices of basis
functions φj(x):

1. Power basis:
φj(x) = xj.

2. Lagrange basis:

φj(x) =

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.

3. Newton basis:
φj(x) =

∏
i<j

(x− xi).

The power basis yields an ill-conditioned system matrix (the Vandermonde
matrix). The Lagrange basis leads to a trivial linear system, but it takes O(d)
time to evaluate each Lagrange polynomial and so O(d2) time to evluate the
interpolant. The Newton basis is a nice compromise: the coefficients can
be computed in O(d2) time as the solution to an upper triangular system
or through a divided difference recurrence, and the polynomial itself can be
evaluated in O(d) time using an algorithm like Horner’s rule.

Divided differences and derivatives

The coefficients in the Newton form of the interpolant are divided differences.
For a given function f known at sample points {xi}ni=1, we can evaluate
divided differences recursively:

f [xi] = f(xi),

f [xi, xi+1, . . . , xj] =
f [xi, xi+1, . . . , xj−1]− f [xi+1, . . . , xj]

xi − xj
.

This recurrence is numerically preferable to finding the coefficients of the
Newton interpolant by back substitution.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

You might recognize the first divided difference f [x1, x2] as a derivative
approximation. In fact, if f is a differentiable function, then the mean value
theorem tells us that f [x1, x2] = f ′(ξ) for some ξ between x1 and x2. Thus
if f is a continuously differentiable function, it makes sense to define

f [xi, xi] ≡ f ′(xi).

This gives us a natural way to solve Hermite interpolation problems in which
we specify both function values and derivatives at specified points.

More generally, it turns out that if f ∈ Cm−1, then

f [x1, x2, . . . , xm] =
f (m−1)(ξ)

(m− 1)!
, some ξ ∈ (min{xi},max{xi})

Therefore, in the limiting case as we let all the xj approach some common
point x0, the Newton form of the interpolant degenerates into a Taylor ap-
proximation.

Error in polynomial approximation

The relation between divided differences and derivatives is incredibly useful in
reasoning about how well polynomial interpolants approximate an underlying
function. Suppose we approximate f ∈ Cn by a polynomial p of degree
n − 1 that interpolates f at points {xi}ni=1. At any point x, we can write
f(x) = p∗(x), where p∗(x) is the degree n polynomial interpolating f at
{xi}ni=1 ∪ {x}. This may seem somewhat silly, but it gives us the error
representation

f(x)− p(x) = p∗(x)− p(x)

= f [x1, . . . , xn, x]
n∏

i=1

(x− xi)

=
f (n)(θ)

n!

n∏
i=1

(x− xi).

If x lies within h of all the values xi and |f (n)| ≤Mn on the interval bounded
by the points in question, then we have

|f(x)− p(x)| ≤ Mnh
n

n!
.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

This bound suggests that high-order polynomial interpolation of a smooth
function over a bounded interval can provide very accurate approximations
to the function values, with two catches. First, if the hn term may not be
small (especially in extrapolation, where x lies outside the convex hull of the
data points). Second, Mn may grow quickly as a function of n. Note that
these two effects are not independent; for example, we can scale the nodal
coordinates to make h smaller, but then Mn gets commensurately bigger.
The standard example of these effects, due to Runge, is the function

φ(t) =
1

1 + 25t2
.

Polynomial approximations to φ(t) by interpolation on a uniform mesh on
[−1, 1] oscillate wildly toward the end points of the interval, and it is not
true in this case that ever higher-degree interpolating polynomials provide
ever-better function approximations. This is a general problem, known as
the Runge phenomena.

Piecewise polynomial approximations

Polynomials are convenient for interpolation for a few reasons: we know
how to manipulate them symbolically, we can evaluate them quickly, and
there is a theorem of analysis (the Weierstrass approximation theorem) that
says that any continuous function on some interval [a, b] can be uniformly
approximated by polynomials. In practice, though, high-degree polynomial
interpolation does not always provide fantastic function approximation. An
alternative approach that retains the advantages of working with polynomials
is to work with piecewise polynomial functions.

Perhaps the simplest example is piecewise linear interpolation; if function
values f(xj) are given at points x1 < x2 < x3 < . . . < xn, then we write the

approximating function f̂(x) as

f̂(x) =
f(xj)(x− xj) + f(xj+1)(xj+1 − x)

xj+1 − xj
, x ∈ [xj, xj+1].

Alternately, we can write

f̂(x) =
n∑

j=1

φj(x)f(xj)

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

where φj(x) is a “hat function”:

φj(x) =


(x− xj+1)/(xj − xj+1), x ∈ [xj, xj+1],

(x− xj−1)/(xj − xj−1), x ∈ [xj−1, xj],

0 otherwise.

This last you may recognize as similar in spirit to using a basis of Lagrange
polynomials for polynomial interpolation.

Piecewise linear interpolation has several virtues: if f is positive or mono-
tone, then any piecewise linear interpolant inherits these properties. But if
f is reasonably smooth and the data points are widely spaced, it may make
sense to use higher-order polynomials. For example, we might decide to use
a cubic spline f̂(x) characterized by the properties:

• Interpolation: f̂(xi) = f(xi)

• Twice differentiability: f̂ ′ and f̂ ′′ are continuous at {x2, . . . , xn−1}

The interpolation and differentiability constraints give us 4n− 2 constraints
on the 4n-dimensional space of piecewise polynomial functions that are de-
fined by general cubics on each interval [xj, xj+1]. In order to uniquely de-
termine the spline, we need some additional constraint; common choices are

• Specified values of f ′ at x1 and xn

• A natural spline: f ′′(x1) = f ′′(xn) = 0

• Not-a-knot conditions: f ′′′ is continuous at x2 and xn−1

• Periodicity: f ′(x1) = f ′(xn), f ′′(x1) = f ′′(xn)

In addition to spline conditions, one can choose piecewise cubic polyno-
mials that satisfy Hermite interpolation conditions (sometimes referred to by
the acronym PCHIP or Piecewise Cubic Hermite Interpolating Polynomials).
That is, the function values and derivatives are specified at each nodal point.
If we don’t actually have derivative values prescribed at the nodal points,
then we can assign these values to satisfy additional constraints. We gain
this flexibility at the cost of some differentiability; piecewise cubic Hermite
interpolants are in general not twice continuously differentiable.

As in the case of polynomial interpolation, there are several different bases
for the space of piecewise cubic functions. Any choice of locally supported

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

basis functions (basis functions that are only nonzero on only a fixed number
of intervals [xj, xj+1]) leads to a banded linear system which can be solved
in O(n) time to find either cubic splines or piecewise Hermite cubic inter-
polants. One common choice of basis is the B-spline basis, which you can
find described in the book.

