
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 8: Wednesday, Mar 16

Problem du jour

Suppose f : Rn → Rn, f(xk) 6= 0, and f ′(xk) is invertible. If u is the Newton
direction u = −f ′(xk)−1f(xk), show

∂‖f(x)‖2

∂u

∣∣∣∣
x=xk

< 0.

Answer: First, note that

∂f(x)Tf(x)

∂u
= 2f(x)T

∂f(x)

∂u
.

By the chain rule and the definition of u, we have

∂f(x)

∂u

∣∣∣∣
x=xk

= f ′(xk)u. = f ′(xk)
(
−f ′(xk)−1f(xk)

)
= f(xk).

Therefore,
∂‖f(x)‖2

∂u

∣∣∣∣
x=xk

= −2‖f(xk)‖2 < 0.

The multi-dimensional case

As in the one-dimensional case, there are several different options for finding
the minimum of a function g depending on several variables, depending on
how many derivatives of g we are willing to compute. These include:

1. Guarded versions of Newton if we are willing to compute Hessians.

2. Modified Newton variants if we are willing to get some second derivative
information but it is too expensive to compute and solve with an exact
Hessian at every step.

3. Steepest descent and coordinate descent methods if we are willing to
compute gradients but do not want to approximate Hessians.

4. Direct search methods (such as Nelder-Mead) when we are only willing
to compare the magnitudes of function values.
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Going downhill

Perhaps the simplest unconstrained optimization algorithm around is gradi-
ent descent (sometimes also called steepest descent):

xk+1 = xk − αk∇f(xk),

where αk is chosen by some line search procedure. Note that

f(xk+1) = f(xk) + f ′(xk)(−αk∇f(xk)) +O(αk)2

= f(xk)− αk‖f ′(xk)‖2 +O(α2
k).

Therefore, if αk is small enough (and xk is not a stationary point), each step
of gradient step will make some progress in decreasing the function value.
Unfortunately, gradient descent can be agonizingly slow.

If f : Rn → R has two continuous derivatives, we know that any local
minimizer x∗ is a stationary point (∇f(x∗) = 0). If we have a good guess at
a local minimizer, therefore, we can simply use Newton iteration with line
search to solve the system of equations ∇f(x∗) = 0:

xk+1 = xk − αkHf (xk)−1∇f(xk).

Alas, there is a problem with Newton iteration that doesn’t occur with gra-
dient descent: maxima and saddle points are also stationary points!

Both Newton iteration and gradient descent have the form

xk+1 = xk − αkuk

for some search direction uk. When will such an iteration actually decrease
the value of f? Using Taylor expansion at xk, we have

f(xk+1) = xk − αkf
′(xk)uk +O(α2

k),

so a reasonable requirement is that f ′(xk)uk > 0 (i.e. uk forms an acute angle
to the gradient vector). That is, uk should be a descent direction.

The picture here is similar to the picture we saw in one dimension. If
Hf (xk) is positive definite, then so is Hf (xk)−1, and

f ′(xk)uk = f ′(xk)Hf (xk)−1f ′(xk) > 0.

If Hf (xk) is not positive definite, then we want to consider something other
than the Newton direction. A standard trick is to form a modified Hessian
matrix Ĥk that is changed just enough from Hf (xk) to be positive definite.
This can be done by adding a multiple of the identity, for example, or by
fixing a Cholesky factorization on the fly.
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Step direction and step size

Forming Hessians is a pain. What would happen if we just stuck to old-
fashioned gradient descent with a line search strategy? Let’s look at a model
problem:

φ(x) =
1

2
xTAx

Note that ∇φ = Ax (Ivo did this in section), and gradient descent with a
line search is

xk+1 = (I − αkA)xk.

Notice that
‖xk+1‖ ≤ ‖I − αkA‖‖xk‖.

Using the fact that A is a symmetric matrix, we have

‖I − αkA‖ = max{|1− αkλ1|, |1− αk, λn|},

where λ1 and λn are the largest and smallest eigenvalues of A, respectively.
The value of αk that makes this number smallest is

α∗ =
2

λ1 + λn
,

which yields
‖xk+1‖
‖xk‖

≤ λ1 − λn
λ1 + λn

=
κ(A)− 1

κ(A) + 1
.

This bound reflects what we actually see in practice with either a fixed step
size or a very inexact line search method. For optima with very ill-conditioned
Hessians, corresponding to a long, shallow “bowl” in space, gradient descent
tends to be slow.

What if we used a line minimization strategy? One can show (though
we won’t) that even in this case, we have fairly slow descent of the objective
function value:

φ(xk+1)

φ(xk)
≤

(
κ(A)− 1

κ(A) + 1

)2

,

and there exist starting points x0 such that this bound is sharp.
What if we have some estimate D of the inverse of the Hessian A? In this

case, the (scaled) gradient descent iteration is

xk+1 = (I − αkD
−1A)xk,
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and we essentially replace κ(A) with κ(D−1A) in all the above bounds. And,
of course, we get convergence in a single step if D−1 = A−1.

It looks, therefore, as though it might be worth getting some estimates
on the behavior of the Hessian matrix whenever possible.


