Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 6: Monday, Mar 7

Problem du jour

Show that for any initial guess xy > 0, Newton iteration on f(z) = 2? — a

produces a decreasing sequence xy > xy > ... > 1, > y/a. What is the rate
of convergence if a = 07
Answer: First, note that for z; > y/a, we have

f(zr)
f'(xr)

Therefore, if 2, > /a, then xp1 < 2.
Now, recall the error recurrence

> 0.

1 /" (&)

_ 1) Qk) o
€k+1 = 5 f’(«rk)ek.

In the case of f(x) = 2? — a, this boils down to

2
€k

€k+1 = 2_:17k
Note that if z; > 0, then egyq > 0, i.e. xpy1 > x,. So the iterates (except
possibly zq) are always greater than /a.

There is a theorem from analysis that guarantees that any bounded,
monotone sequence converges to some limit, so we know the Newton iter-
ation converges. As for the rate of convergence, in the case a = 0, we have
the iteration:

Tpe1 = Tk /2.

This converges to zero, but the convergence is linear.

Logistics
1. HW 4 was due this morning.
2. Project 2 (ray casting) will be due Wednesday, March 16.

3. There will be no homework or projects over Spring Break.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Ray tracing

The next project will involve ray tracing an implicit surface defined by an
equation f(z,y,z) = 0. We will assume that f is a nice, smooth function,
and that there is a MATLAB function available to compute function values
and gradients. Your job is to find where rays originating from the viewer
first intersect this surface. I have already provided some framework code to
do the rendering once you find where the surface is.

Ivo will talk about the project in section, but I want to emphasize two
points now:

1. Part of the project involves understanding the performance of your
code. I can render a sphere at 640-by-480 resolution in about 1.5 sec-
onds; while I don’t necessarily expect your code to be as fast, if your
code takes ten minutes to do the same thing, it had better be produc-
ing really nice pictures. You should use MATLAB’s profiler to help you
understand where there are bottlenecks in your code that you might
want to improve.

2. In addition to the code, I want a good write-up that describes what
testing you have done, what shortcomings and failure modes your code
may have, and where there are performance bottlenecks. The prompt
has a list of items that I would like in your report. The write-up will
be worth a substantial fraction of the project grade.

Dealing with Newton

Newton iteration and closely-related variants are a workhorse in nonlinear
equation solving. Unfortunately, as we have seen, Newton’s method is only
locally convergent. A good part of the art of nonlinear equation solving
is in dealing with this local convergence property. In one dimension, we
can combine Newton’s method (or secant method, or other iterations) with
bisection in order to get something that is simultaneously robust and efficient;
Charlie talked about this last Wednesday. But bisection is a one-dimensional
construction. In higher dimensions, what can we do?
As it turns out, there are several possible strategies:

1. Get a good guess: If you have some method of getting a good initial

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

guess, Newton iteration is terrific. Getting a good guess is application-
specific.

2. Modify the problem: There are usually many equivalent ways to write
an equation f(z) = 0. Some of those ways of writing things may lead
to better convergence. For example, if f(x) has a zero close to the
origin and approaches some constant value far away from the origin,
we might want to look at an equation like f(x)(||z]|* +1) = 0. If f(x)
has a pole that causes problems, we might want to multiply through by
a function that removes that pole. In general, it pays to have a good
understanding of the properties of the functions you are solving, and to
try to minimize the effects of properties that confuse Newton iteration.
Alas, this is also application-specific.

3. Choose a specialized iteration: Newton iteration is our workhorse, but
it isn’t the only horse around. Other iterations may have better con-
vergence properties, or they may be cheap enough that you are willing
to let them run for many more iterations than you would want to take
with Newton. This is application-specific; but for lots of applications,
you can find something reasonable in a textbook or paper.

4. Use a line search: What goes wrong with Newton iteration? The New-
ton direction should always take us in a direction that reduces || f(x)]|,
but the problem is that we might overshoot. We can fix this problem
by taking steps of the form

Ty1 = 2 — ap [(2e) " f (@),

where ay, is chosen so that || f(zg4+1)|| < ||f(xr)|]. Refinements of this
strategy lead to iterations that converge to some root from almost
everywhere, but even the basic strategy can work rather well. Ideally,
ar — 1 eventually, so that we can get the quadratic convergence of
Newton once we've gotten sufficiently close to a root.

5. Use a trust region': The reason that Newton can overshoot the mark
is because we keep using a linear approximation to f about z, far
beyond where the linear approximation is accurate. In a trust region

T will not ask you about trust regions on any homework or exam! But it is a sufficiently
widely-used technique that you might want to at least recognize the term.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

method, we define a sphere of radius p around x; where we think linear
approximation is reasonable. If the Newton step falls inside the sphere,
we take it; otherwise, we find a point on the surface of the sphere to

minimize || f(zx) + f' (1) (Tp1 — z2) ||*

6. Use a continuation strategy: Sometimes there is a natural way of grad-
ually transitioning from an easy problem to a hard problem, and we
can use this in a solver strategy. Suppose f(z;s) is a family of func-
tions parameterized by s, where solving f(x;1) = 0 is hard and solving
f(z;0) = 0 is easy. Then one approach to solving f(x;1) =0 is:

xguess = 0; % Initial guess for the easy problem

for s = 0:ds:1
% Solve f(x; s) = 0 using the solution to f(z; s—h) = 0 as
% an initial guess
xguess = basic_solver (f, s, xguess);

end

X = Xguess;

There are many, many variants on this theme.

Unconstrained optimization: a refresher

Suppose f : R — R has two continuous derivatives. From a first calculus
class, we know that any local minimizer or maximizer must be a stationary
point, i.e.

f'(z.) = 0.
This is sometimes called the first derivative test. There is also a second

deriwative test that we can use to distinguish whether a stationary point x,
is a minimum, maximum, or something else:

1. If f"(z.) > 0, then z, is a minimum.
2. If f"(z,) <0, then z, is a maximum.
3. If f"(x,) =0, then we have no information.

We call z, a strong local minimizer if f'(x,) =0 and f”(x,) > 0.
The first and second derivative tests capture the idea that a local min-
imum point is a point where there are no “downhill” directions. If f'(z) is

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

nonzero, then f(z+0) ~ f(x)+ f'(z)d < 0 if 0 is a small value whose sign is
opposite the sign of f'(z), so the first derivative test is necessary. Similarly,
if x, is a strong local minimizer, then

flae+0) ~ f(x.) + f'(2.)0% > f(x.)

for any sufficiently small §.

Usually, we are interested in optimizing functions of more than one vari-
able, and so we would like appropriate extensions of the first and second
derivative tests. This is something you probably saw in a multivariate cal-
culus class; but you may have forgotten it, or learned it with a different
notation than I use, so let me briefly review here. We again want to find
conditions that correspond to “no downbhill direction”; that means we need
to reason about the local behavior of f in different directions.

For a multi-variable function f : R®™ — R, recall that the directional
derivative in some direction® u is

af . d
3= 7

s=0 i=1

where the second equality follows by the multivariable version of the chain
rule. We can rewrite the summation in terms of vectors and dot products as

> 2wy = £ wyu = V(@)

where the derivative f'(x) is a row vector of partial derivatives and the gra-
dient Vf(z) is a column vector of partials:

f'=[0f/0x Off0xy ... Of]0u,]

V="
If Vf(z) # 0, that means that for u = —V f(x), the directional derivative
is 0f /JOu = —||Vf(z)]|> < 0, and so u is a downhill direction. In fact, the

direction —V f(x) is the direction of steepest descent. Therefore, if z, is a
minimum, we require V f(z,) = 0 (i.e. z, is a stationary point). This is the
multivariable first derivative test.

2In some sources, you will see a convention that the direction w is always normalized
to unit length. We will not have this requirement.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

In order to generalize the second derivative test, we need to reason about
second derivatives. We begin with directional second derivatives:

02 f NE

%(x) T ds?

flz+ su) = ZZ 8x0at»<x)uiu]"

s=0 i=1 j=1

where the last equality comes by applying the multivariable chain rule to

d B (g g—i(x + su)uj> .

2

ds?

Szof(x+su) =

We can write the directional second derivative in terms of summations over
indices, but there is also a convenient matrix formulation:

2 f

W(:p) =u" Hs(z)u

where Hy(z) is the Hessian matriz:

92 f 9% f 92 f

823123.%1 Ox10x2 T O0x10xn
o°f 02 f 0 f

Hf — 8:132.8@’1 (9&:2'84132 e 3362'81‘”
92 f 92 f 9% f

Oxrndxry Oxndxe2 " Odxpdxn

If z, is a stationary point and f has enough derivatives, then for every

direction u we have
1
fze+ su) = f(z.) + §S2UTHf(.’E*)u + O(s*),
where the first-order term drops out because f'(z.) = 0. A sufficient con-
dition for minimality is that we satisfy the second derivative test for any
direction, i.e.
Vo #£0, v Hp(z.)v > 0.

If the matrix H(z,) satisfies this condition, it is called positive definite.

