Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 5: Monday, Feb 28

Logistics

1. Project 1 is graded, Homework 3 is due, and Homework 4 is posted.
Note that HW 4 is due at 9 am on Wednesday, March 9, via CMS.

2. Exam grades, grading rubric, and solutions are online. The exams are
available for pickup in 363C Upson.

3. I will be gone this week, so no office hours. Wednesday’s lecture will
be given by Professor Van Loan.

A little long division

Let’s begin with a question: Suppose I have a machine with hardware support
for addition, subtraction, multiplication, and scaling by integer powers of two
(positive or negative). How can I implement reciprocation? That is, if d > 1
is an integer, how can I compute 1/d without using division?

This is a linear problem, but as we will see, it presents many of the same
issues as nonlinear problems.

Method 1: From long division to bisection'

Maybe the most obvious algorithm to compute 1/d is binary long division
(the binary version of the decimal long division that we learned in grade
school). To compute a bit in the kth place after the binary point (corre-
sponding to the value 27%), we see whether 27%d is greater than the current
remainder; if it is, then we set the bit to one and update the remainder. This
algorithm is shown in Figure 1.

At step k of long division, we have an approximation &, & < 1/d < £+27F,
and a remainder » = 1 — dz. Based on the remainder, we either get a
zero bit (and discover 2 < 1/d < 2 4+ 2=**V) or we get a one bit (i.e.
#4271 < 1/d < #427%). That is, the long division algorithm is implicitly
computing interals that contain 1/d, and each step cuts the interval size

'In lecture, I briefly mentioned that long division and bisection were closely related,
but didn’t go into details. These notes seem like a good place to be more explicit.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

function x = lecl1division(d, n)
% Approximate x = 1/d by n steps of binary long division.

r=1; % Current remainder
x = 0; % Current reciprocal estimate
bit = 0.5; % Value of a one in the current place

for k = 1:n
if r > dxbit
X =X+ bit;
r =r — dxbit;
end
bit = bit/2;
end

Figure 1: Approximate 1/d by n steps of binary long division.

function x = lecl1bisect(d, n)
% Approximate x = 1/d by n steps of bisection
% At each step f(x) = dx—1 is negative at the lower
% bound, positive at the upper bound.

hi = 1; % Current upper bound
lo =0; % Current lower bound

for k = 1:n
x = (hi+lo)/2;
fx = dxx—1;
if fx >0
hi = x;
else
lo =x;
end
end

Figure 2: Approximate 1/d by n steps of bisection.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

by a factor of two. This is characteristic of bisection, which finds a zero
of any continuous function f(x) by starting with a bracketing interval and
repeatedly cutting those intervals in half. We show the bisection algorithm
in Figure 2.

Method 2: Almost Newton

You might recall Newton’s method from a calculus class. If we want to es-
timate a zero near xj;, we take the first-order Taylor expansion near x; and
set that equal to zero:

f(@rgn) = flor) + f'(zr) (w1 — 22) = 0.

With a little algebra, we have

Ty1 = xp — f(xr) " f(an).

Note that if x, is the actual root we seek, then Taylor’s formula with remain-
der yields

0= Flw) = Fa) + @), —) + 3£ — 00

Now subtract the Taylor expansions for f(xpy1) and f(z.) to get

1
F/(on) (nsr = 20) + 5 1€ g — 2)* = 0.
This gives us an iteration for the error e, =), — x,:

1 f7(€) »

6k+1 = —émek

Assuming that we can bound f”(§)/f(zx) by some modest constant C, this
implies that a small error at e; leads to a really small error |ex 1] < Cleg|?
at the next step. This behavior, where the error is squared at each step, is
quadratic convergence.

If we apply Newton iteration to f(x) = dz — 1, we get

dl’k —1 1
Lht1 = Tk — d = 4

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

That is, the iteration converges in one step. But remember that we wanted to
avoid division by d! This is actually not uncommon: often it is inconvenient
to work with f’(z), and so we instead cook up some approximation. In this
case, let’s suppose we have some d that is an integer power of two close to d.
Then we can write a modified Newton iteration

T —x—dwk_l (1—C—Z)x —i—l
E+1 k i i k ;

Note that 1/d is a fized point of this iteration:

L_ () 41,1
d d)d d

If we subtract the fixed point equation from the iteration equation, we have
an iteration for the error e, = x — 1/d:

(=)
e = — = | €.
k+1 d k

So if |d — d|/|d| < 1, the errors will eventually go to zero. For example, if we
choose d to be the next integer power of two larger than d, then |d—d|/|d| <
1/2, and we get at least one additional binary digit of accuracy at each step.

When we plot the error in long division, bisection, or our modified Newton
iteration on a semi-logarithmic scale, the decay in the error looks (roughly)
like a straight line. That is, we have linear convergence. But we can do
better!

Method 3: Actually Newton

We may have given up on Newton iteration too easily. In many problems,
there are multiple ways to write the same nonlinear equation. For example,
we can write the reciprocal of d as x such that f(z) = dz —1 =0, or we can
write it as x such that g(z) = x7* —d = 0. If we apply Newton iteration to

g, we have

9(xk)
g' (k)
As before, note that 1/d is a fixed point of this iteration:

1 1 1
zﬁzz(?‘da>'

Tht1 = Tk — =ap +ar(z! —d) = 2(2 — day,).

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Given that 1/d is a fixed point, we have some hope that this iteration will
converge — but when, and how quickly? To answer these questions, we need
to analyze a recurrence for the error.

We can get a recurrence for error by subtracting the true answer 1/d from
both sides of the iteration equation and doing some algebra:

Cri1 = Tppr —d '

= 2,(2 — day) —d*

= —d(2; — 2d 'wp +d?)
—d({ljk — d_1)2
= —de}

In terms of the relative error 6y = e, /d~! = dey, we have
Ok41 = _513+1-

If |dg| < 1, then this iteration converges — and once convergence really sets
in, it is ferocious, roughly doubling the number of correct digits at each
step. Of course, if |§y| > 1, then the iteration diverges with equal ferocity.
Fortunately, we can get a good initial guess in the same way we got a good
guess for the modified Newton iteration: choose the first guess to be a nearby
integer power of two.

On some machines, this sort of Newton iteration (intelligently started) is
actually the preferred method for division.

The big picture

Let’s summarize what we have learned from this example (and generalize
slightly to the case of solving f(x) = 0 for more interesting f):

e DBisection is a general, robust strategy. We just need that f is contin-
uous, and that there is some interval [a, b] so that f(a) and f(b) have
different signs. On the other hand, it is not always easy to get a brack-
eting interval; and once we do, bisection only halves that interval at
each step, so it may take many steps to reach an acceptable answer.
Also, bisection is an intrinsically one-dimensional construction.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

e Newton iteration is a standard workhorse based on finding zeros of suc-
cessive linear approximations to f. When it converges, it converges fe-
rociously quickly. But Newton iteration requires that we have a deriva-
tive (which is sometimes inconvient), and we may require a good initial
guess.

e A modified Newton iteration sometimes works well if computing a deriva-
tive is a pain. There are many ways we can modify Newton method for
our convenience; for example, we might choose to approximate f’(zy)
by some fixed value.

e [t is often convenient to work with fized point iterations of the form

Tp+1 = g(xk),

where the number we seek is a fixed point of g (z. = g(z.)). Newton-
like methods are an example of fixed point iteration, but there are
others. Whenever we have a fixed point iteration, we can try to write
an iteration for the error:

1 = Tpr1 — Lo = g(xg) — g(2s) = g(zs +) — g(xs).

How easy it is to analyze this error recurrence depends somewhat on
the properties of g.

