
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 5: Monday, Feb 21

Problem du jour

Suppose |ŷ − y|/|y| = δ. What are the possible values of |ŷ − y|/|ŷ|?
Answer: |ŷ|/|y| = 1± δ, so

|ŷ − y|
|ŷ|

=
|ŷ − y|
|y|

|ŷ|
|y|

=
δ

1± δ
.

Logistics

1. Project 1 is due at midnight. Please read the late policies in the syllabus
to see what happens if you slip – there’s a 10% penalty for submitting
before Wednesday at midnight, and you can get pass/fail credit through
the coming Monday. You may want to run the performance checks that
have been posted on the web site (in addition to your own correctness
tests).

2. The first prelim is tomorrow, February 22, at 7:30 in Upson B17. We
have the room for 90 minutes, but I hope that most of you will be able
to finish the exam within about one hour. It is closed book, but you
can bring a page of handwritten notes – both sides of a sheet of paper.

3. I will be in town for Monday’s lecture next week, but out of town
for the rest of that week. Professor Van Loan will cover the lecture
on Wednesday. There will not be office hours next Wednesday and
Thursday.

4. HW 3 is posted, and will be due Monday, 2/22. Don’t worry, it’s short.

Digression: orthogonality and inner products

An inner product 〈·, ·〉 on a real vector space takes two vectors and produces a
real number. It is defined by the properties of positive definiteness, symmetry,
and linearity in each argument:

1. 〈x, x〉 is positive for x 6= 0, zero for x = 0,
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2. 〈x, y〉 = 〈y, x〉,

3. 〈αx, z〉 = α〈x, z〉 and 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

You know the standard example of a dot product: if x and y are in Rn, then
the standard inner product is 〈x, y〉 = xTy. There are other inner products,
though. For example, if f, g : [a, b]→ R are nice, we might choose

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

An inner product defines other interesting things. It induces a norm,

‖x‖ =
√
〈x, x〉,

and it defines how we measure angles between vectors:

cos(θ) =
〈x, y〉
‖x‖‖y‖

.

In particular, x and y are orthogonal if 〈x, y〉 = 0.
We will mostly be working with the standard inner product with which

you are already comfortable (I hope). But one of this week’s homework
problems involves solving a least squares problem using the inner product
between functions that we defined above. In general, it is worthwhile keeping
in mind that there are other inner products in the world.

Question: What is 〈x, 1〉 with the inner product 〈f, g〉 =
∫ 1

−1 f(x)g(x) dx?

Least squares: the big idea

Least squares problems are a special sort of minimization. Suppose A ∈ Rm×n

and m > n. In general, we will not be able to exactly solve overdetermined
equations Ax = b; the best we can do is to minimize the residual r = b−Ax.
In least squares problems, we minimize the two-norm of the residual1:

Find x̂ to minimize ‖r‖22 = 〈r, r〉.

This is not the only way to approximate the solution to an overdetermined
system, but it is attractive for several reasons:

1 Minimizing the two-norm is equivalent to miminizing the squared two-norm.
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1. It’s really mathematically attractive. ‖x‖2 is a smooth function of x,
and the solution to the least squares problem is a linear function of b
(x = A†b where A† is the Moore-Penrose pseudoinverse of A)

2. There’s a nice picture that goes with it – the least squares solution is
the projection of b onto the span of A, and the residual at the least
squares solution is orthogonal to the span of A.

3. It’s a mathematically reasonable choice in statistical settings when the
data vector b is contaminated by Gaussian noise.

Normal equations

One way to solve the least squares problem is to attack it directly. We know
‖r‖2 = ‖b − Ax‖2; and from a given x, the directional derivative in any
direction δx is

∇x‖r‖2 · δx = 2〈Aδx, b− Ax〉 = 2δxT (AT b− ATAx).

The minimum occurs when all posible directional derivatives are zero, which
gives us the normal equations2

ATAx = AT b.

Rearranging, we have

x = (ATA)−1AT b = A†b;

the matrix A† = (ATA)−1AT is the Moore-Penrose pseudoinverse of A (some-
times just called the pseudoinverse).

If the columns of A are not too close to linearly dependent, we would
usually just form the normal equations and solve them by using Cholesky
factorization3 to write

ATA = RTR,

where R is an upper triangular matrix.

2They are called the normal equations because they specify that the residual must be
normal (orthogonal) to every vector in the span of A.

3Cholesky factorization a variant of Gaussian elimination that works for matrices that
are symmetric and positive definite.
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QR factorization

Another approach is to write a QR factorization:

A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1

where Q ∈ Rm×m is orthogonal (QTQ = I) and R is upper triangular. The
columns of Q1 ∈ Rm×n form an orthonormal basis for the range space of A,
and the columns of Q2 span the orthogonal complement. The factorization
A = Q1R1 is sometimes called the “economy” QR factorization.

Multiplication by an orthogonal matrix does not change lengths, so

‖r‖2 = ‖QT r‖2 =

∥∥∥∥[R1

0

]
x−QT b

∥∥∥∥2 = ‖R1x−QT
1 b‖2 + ‖QT

2 b‖2.

The second part of this expression (‖QT
2 b‖2) is error that we cannot reduce;

but R1x − QT
1 b can be made exactly equal to zero. That is, the solution to

the least squares problem is

x = R−11 QT
1 b.

In Matlab, we can compute the QR factorization using the qr routine:

[Q, R ] = qr(A); % Full QR
[Q1,R1] = qr(A,0); % Economy QR

We also use QR implicitly if we solve a least-squares system using the ever-
useful backslash operator:

x = A\b; % Minimize norm(Ax−b) via a QR factorization

Sensitivity and conditioning

At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.
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Correspondingly, there are two ways we can get into trouble in solving least
squares problem: either b may be nearly orthogonal to the span of A, or the
linear system might be ill-conditioned.

Let’s consider the issue of b nearly orthogonal to A first. Suppose we have
the trivial problem

A =

[
1
0

]
, b =

[
ε
1

]
.

The solution to this problem is x = ε; but the solution for

A =

[
1
0

]
, b̂ =

[
−ε
1

]
.

is x̂ = −ε. Note that ‖b̂ − b‖/‖b‖ ≈ 2ε is small, but |x̂ − x|/|x| = 2 is
huge. That is because the projection of b onto the span of A (i.e. the
first component of b) is much smaller than b itself; so an error in b that is
small relative to the overall size may not be small relative to the size of the
projection onto the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regression, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ‖r‖/‖b‖ is close to one, we have a
numerical problem, but we also probably don’t have a very good model. A
more subtle issue problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned).

The condition number of A for least squares is

κ(A) = ‖A‖‖A†‖ = κ(R1) =
√
κ(ATA).

We generally recommend solving least squares via QR factorization because
κ(R1) = κ(A), while forming the normal equations squares the condition
number. If κ(A) is large, that means:

1. Small relative changes to A can cause large changes to the span of A
(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.
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If θ is the angle between b and the range of A4, then the sensitivity to
perturbations in b is

‖∆x‖
‖x‖

≤ κ(A)

cos(θ)

‖δb‖
‖b‖

,

while the sensitivity to perturbations in A is

‖∆x‖
‖x‖

≤
(
κ(A)2 tan(θ) + κ(A)

) ‖E‖
‖A‖

.

Even if the residual is moderate, the sensitivity of the least squares problem
to perturbations in A (either due to roundoff or due to measurement error)
can quickly be dominated by κ(A)2 tan(θ) if κ(A) is at all large.

In regression problems, the columns of A correspond to explanatory fac-
tors. For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, perhaps weight might
be well predicted by height and age in our sample population. This hap-
pens reasonably often. When there is some correlation, we get moderate ill
conditioning, and might want to use QR factorization. When there is a lot
of correlation and the columns of A are truly linearly dependent (or close
enough for numerical work), we have a rank-deficient problem. We will talk
about rank-deficient problems next lecture.

4Note that b, Ax, and r are three sides of a right triangle, so sin(θ) = ‖r‖/‖b‖.


