
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 4: Wednesday, Jan 16

Problem du jour1

1. Suppose A = LU is given. Given a fast method to compute det(A).

2. In order to test whether or not a matrix A is singular, one sometimes
uses a bordered linear system. If A ∈ Rn×n, we choose b, c ∈ bbRn and
d ∈ R at random and try to solve the equation[

A b
cT d

] [
x
y

]
=

[
0
1

]
.

If the extended matrix is singular, then A almost certainly has a null
space of at least dimension two; otherwise, with high probability, y = 0
iff A is singular. Why does this make sense?

Logistics

1. The prelim is on Tuesday at 7:30. It is a one-hour, closed book exam
(you can bring a page of handwritten notes – both sides of a sheet of
paper). If you will need to take a make-up because of a conflict with
another class, please let me know so that we can figure out timing. A
practice exam will be posted shortly.

2. Project 1 is due Monday. Don’t procrastinate. It’s not entirely trivial,
and figuring out the project is actually a good way to study for some
aspects of the exam.

Bordered systems: a digression

We’ve discussed in the past why the determinant might not be a good basis
for a test for singularity. An alternative test which is sometimes used in
numerical bifurcation analysis involves a bordered system. An example is

1Because I was asked: “du jour” is French for “of the day.”



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

given in the problem of the day: we can test whether A is singular by looking
at the value of y in the solution to the linear system[

A b
cT d

] [
x
y

]
=

[
0
1

]
.

Let’s see if we can figure out why this should be the case. Let’s first suppose
that A is just “close” to singular rather than being exactly singular, and
that we can write A = LU . Then we can write the LU factorization of the
extended matrix as[

A b
cT d

]
=

[
L 0

cTU−1 1

] [
U L−1b
0 d− cTU−1L−1b

]
Notice that [

L 0
cTU−1 1

]−1 [
0
1

]
=

[
0
1

]
,

so [
x
y

]
=

[
A b
cT d

]−1 [
0
1

]
=

[
U L−1b
0 d− cTU−1L−1b

]−1 [
0
1

]
.

The last row of this equation gives us

y =
(
d− cTA−1b

)−1
.

As A becomes closer and closer to singular, we expect cTA−1b to tend toward
infinity, so that y tends toward zero.

Gaussian elimination in Matlab again

Last time, we discussed two Matlab calls for factoring a dense or sparse
matrix A using Gaussian elimination with partial pivoting:

[L,U,P] = lu(A) Compute PA = LU for dense problems
[L,U,P,Q] = lu(A) Compute PAQ = LU for sparse problems

Here P is a permutation matrix that reorders equations (for stability) and
Q is a permutation matrix that reorders variables (for sparsity). But why
should we ever call the lu function instead of just using backslash to solve
with A? After all, using backslash to solve with A also does factorization.
The answer is that calling lu is an O(n3) time operation in the dense case,



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

just like using backslash with A. Solving with L and U , on the other hand,
costs O(n2). There are often times when we want to solve a sequence of linear
systems with the same matrix and different right-hand sides; for example,
we could compute the first-order Taylor approximation of (A+ tE)−1b about
t = 0 this way:

[L,U,P] = lu(A);
x0 = U\(L\(P∗b));
x0p = −(U\(L\(P∗(E∗x0))));
xbar = x0 + t∗x0p;

If we did not do the LU factorization at the start, we would pay for the
factorization twice: once when computing x0 and once when computing x0p.

Partial pivoting

I have said little about the role of the permutation matrix P in the factoriza-
tion. The reason that P is there is to help control the size of the elements in
L. For example, consider what happens when we factor the following matrix
without pivoting:

A =

[
ε 1
1 1

]
=

[
1 0
ε−1 1

] [
ε 1
0 1− ε−1

]
.

In the book, Heath points out that if we round u22 to −ε−1, then we have[
1 0
ε−1 1

] [
ε 1
0 −ε−1

]
=

[
ε 1
1 0

]
6= A;

that is, a rounding error in the (huge) u22 entry causes a complete loss of
information about the a22 component.

In this example, the l21 and u22 terms are both huge. Why does this
matter? When L and U have huge entries and A does not, computing the
product LU must inevitably involve huge cancellation effects, and we have
already seen the danger of cancellation in previous lectures. The partial
pivoting strategy usually used with Gaussian elimination permutes the rows
of A so that the multipliers at each step (the coefficients of L) are at most
one in magnitude. Even with this control on the elements of L, it is still
possible that there might be “pivot growth”: that is, elements of U might



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

grow much larger than those in A. But while it is possible to construct test
problems for which pivot growth is exponential, in practice such cases almost
never happen.

Error in Gaussian elimination

Barring the possibility of extreme pivot growth, Gaussian elimination with
partial pivoting is backward stable. That means that we can explain the
effects of roundoff in the computation in terms of a small perturbation to
the original problem. That is, we exactly solve Âx̂ = b̂, where ‖Â−A‖/‖A‖
and ‖b̂− b‖/‖b‖ are typically around nεmach. Recall that backward errors are
connected to forward errors through the condition number, so

‖x̂− x‖
‖x‖

. κ(A)

(
‖Â− A‖
‖A‖

+
‖b̂− b‖
‖b‖

)
.

In practice, then, Gaussian elimination results in solutions with a small for-
ward error whenever the matrix A is well-conditioned.

An alternative error bound applies even in the case when we solve Ax = b
using some method beside Gaussian elimination (or even in the event of large
pivot growth)2. If x̂ is an approximation to A−1b, the residual is

r = b− Ax̂.

Notice that Ax̂ = (b− r), so we can see the residual as a backward error in b
for the approximate solution x̂. With a little algebra, we can again connect
this backward error to the forward error through the condition number:

‖x̂− x‖
‖x‖

. κ(A)
‖r‖
‖A‖‖b‖

.

Summary: Using Gaussian elimination wisely

To summarize the past two lectures, here is our advice on solving most linear
systems:

2I think I neglected to actually talk about this in class, but the basic idea — relating a
residual to the forward error — will come up again in later lectures, so I want to mention
it in these notes.



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

1. Solve dense linear systems using Gaussian elimination with partial piv-
oting, either by explicitly computing an LU factorization or by using
software (like Matlab’s backslash operator) that does the LU factor-
ization for you behind the scenes. There is good, fast software available
for this procedure, and it is backward stable in practice (though this
will not save you from the need to be aware of ill conditioning – which
you can detect cheaply based on Matlab’s condest and related rou-
tines).

2. Factoring a dense linear system costs O(n3). Subsequent solves with
the triangular factors (forward and backward substitution) cost O(n2)
for each right-hand side. Therefore, if you will use the same matrix in
multiple problems, it pays to compute the factorization once and re-use
it.

3. For matrices with special structure, there are variants of Gaussian elim-
ination that are potentially much faster than O(n3). One type of special
structure that occurs in many practical problems is sparsity, where most
of the entries of the matrix are zero. Matlab has a special data type
for sparse matrices, and specialized routines to factor and solve with
these matrices. These routines are very fast assuming that there is not
too much fill (nonzeros in L and U in locations where A is nonzero). To
try to minimize fill, sparse factorizations usually also involve a column
permutation, and so we write PAQ = LU .

4. The performance behavior of sparse Gaussian elimination depends on
the graph structure associated with the matrix. For many common
structures, sparse factorization methods work terrifically well; but for
some matrices, there is too much fill, and we would rather use iterative
methods. We will discuss iterative methods for linear systems later in
the course, around the same time we talk about iterative methods for
the solution of nonlinear equations.


