Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 2: Wednesday, Feb 2

Logistics

1. Class for Wednesday, Feb 2, has been cancelled. These notes were my
preliminary version of what I had intended to cover during this lecture.
Though I will cover much the same material on Monday, I am posting
these online in order to help you if you choose to start HW 2 a little
early.

2. HW 1 should now be handed in during class on Monday, Feb 7.

3. HW 2 should is now due Monday, Feb 14.

Digression: A useful power series

This seems like a good place to mention a Taylor expansion that we will see
more than once in the coming weeks. For |z| < 1, we can write an absolutely

convergent series:
oo
(1—2)"t= ij.
§=0
As a concrete example of this, we have that if § is around €,acn,

(1+6)'t=1-§

The utility of this power series is not restricted to real numbers! When
E is a “small” matrix, we have the matrix power series

(I-E)y'= iEj.

As in the scalar case, the linear approximation (I + E)™' ~ I — E is often
useful. We will see this again when we talk about sensitivity of linear systems
in the next couple lectures.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Matrices and vectors in Matlab'

Vectors and matrices are basic objects in numerical linear algebra’. They are
also basic objects in MATLAB. For example, we can write a column vector®
r € R? as

x = [1; 2; 3];
and a matrix A € R**3 as
A=11,5 9
2, 6, 10;
3, 7, 11;
4, 8, 12];

Internally, MATLAB uses column major layout — all the entries of the first
column of a matrix are listed first in memory, then all the entries of the
second column, and so on. This is actually visible at the user level in some
contexts. For example, when I enter A as above, the MATLAB expression
A(6) evaluates to 6; and if I write

fprintf(’%d\n’, A);

the output is the numbers 1 through 12, one per line.
I can multiply matrices and vectors with compatible dimensions using the
ordinary multiplication operator:

y = Axx; % Computes y = [38; 44; 50; 56]

The tic operator in MATLAB computes the (conjugate) transpose of a matrix
or a vector. For example:

b=[1; 2|; % bis a column vector
bt =b’ % bt =[1, 2] is a row vector

C=11,2 3, 4]
Ct=C% % Ct=[1,5 2 4 Ciij) is C(ji)

IThis section should be review. If it looks completely unfamiliar, please see me.

2T suppose abstract linear maps are more basic than matrices — but you have to have
matrices to compute.

3In this class, the word “vector” with no qualifiers will usually mean “column vector.”
If I want to refer to a row vector, I will write “row vector.”

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

If z and y are two vectors, we can define their inner product (also called the
scalar product or dot product) and outer product in terms of ordinary matrix
multiplication and transposition:

x = [1; 2];

y =13 4f;

dotxy = x’xy; % Inner product is 1x3 + 2x/ = 11
outer = xxy’; % Outer product is [3, 6;, 4, 8]

If I want to apply the inverse of a square matrix C, I can use the backslash
(solve) operator

C=11,2 3, 4;
b =[1; 2J;
z = C\b; % Computes z = [0; 0.5]. Better than z = inv(C)xb.

Most expressions that involve a matrix inverse can be rewritten in terms of
the backslash operator, and backslash is almost always preferable to the inv
command.

The costs of computations

Our first goal in any scientific computing task is to get a sufficiently accurate
answer. Our second goal is to get it fast enough®*. Of course, there is a tradeoff
between the computer time and our time; and often, we can optimize both
by making wise high-level decisions about the type of algorithm we should
use, and then calling an appropriate library routine. At the same time, we
need to keep track of enough details so that we don’t spend days on end
twiddling our thumbs and waiting for a computation that should have taken
a few seconds. It is easy to goof and write slow MATLAB code. Fortunately,
MATLAB has a profiler that can help us find where our code is spending all its
time; for details, type help profile at the command line. Unfortunately,
it doesn’t always help us to know where we are spending a lot of time if we
don’t know why.

The work to multiply an m X n matrix by an n X p matrix is O(mnp).
If A e R"™" and B € R"*P are general (dense) MATLAB matrices, then the

4If you really like thining about how to make things run fast enough, you might enjoy
CS 5220: Applications of Parallel Computers. I'll be teaching it in the fall.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

work to compute A~! B using the backslash operator is O(n®+n?p)°. Because
matrix multiplication is associative, (AB)C and A(BC') are mathematically
equivalent; but they can have very different performance depending on the
matrix sizes. For example, if x,y, 2 € R" are three vectors (n x 1 matrices),
then evaluating (zy”)z takes O(n?) arithmetic and storage (O(n?) arithmetic
and storage for the outer product and O(n?) arithmetic to multiply by z).
But the equivalent expression x(y’ z) takes only O(n) arithmetic and storage:
O(n) arithmetic and one element of storage to compute the inner product,
followed by O(n) arithmetic and storage to multiply = by a scalar.

Because equivalent mathematical expressions can have very different per-
formance characteristics, it is useful to remember some basic algebraic prop-
erties of simple matrix operations:

(AB)C = A(BC)
(AB)T = BT A"
(AB) ' =pBtA™!
AT = (AT = (A7)
It is also helpful to remember that some matrix operations can be written

more efficiently without forming an explicit matrix. For example, the follow-
ing codes are equivalent:

% Inefficient (O(n"2))
y = diag(s)*x; % Multiply x by a diagonal scaling matriz
z = (cxeye(n))*x; % Multiply x by cxI

% Efficient
y = S.¥X; % .x is componentwise multiplication
7 = C*X; % Can omit multiplication by an identity

In addition to poor choices of parentheses, we can get terrible performance
in MATLAB if we ignore silent costs. But we can also get surprisingly good
performance if we play to MATLAB’s strength in vector operations®. For
example:

5The backslash operator is actually very sophisticated, and it will take advantage of any
structure it can find in your matrix. If the matrix A is triangular, MATLAB will compute
A71B in O(n?p) time; if A is represented using MATLAB’s sparse matrix features, the cost
can be even lower.

6Recent versions of MATLAB pre-compile scripts into byte code, and the compiler has
an optimizer. Consequently, recent versions of MATLAB have better loop performance

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

% Inefficient (O(n"2) data transfer operations)
results = [[;
for k = 1m
results (k) = foo(k); % Allocates a length k+1 array, copies old data in
end

% More efficient (no silent memory costs)

results = zeros(1,n); % Pre—allocate storage
for k = 1m

results (k) = foo(k);
end

% Most efficient if foo is wvectorized
results = foo(l:n);

People sometimes think MATLAB must be slow compared to a language
like Java or C. But for matrix computations, well-written MATLAB is often
faster than all but very carefully tuned code in a compiled language. That
is because MATLAB uses very fast libraries for linear algebra operations like
matrix multiplication and linear solves. Most of our codes in this class will
be fast to the extent that we can take advantage of these libraries.

Of sizes and sensitivities

When we talked about rounding error analysis for scalar functions, I empha-
sized a couple points:

e [care about relative error more than absolute error.

e Some functions are ill-conditioned. These are hard to solve because a
small relative error in the input can lead to a large relative error in the
output.

e We like algorithms that are backward stable: that is, they return an
answer which solves slightly the wrong problem. (small backward er-
ror). The forward error for a backward stable algorithm is bounded

than older versions, particularly when the loops have simple structures that the optimizer
can figure out.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

by the product of the backward error and the condition number, so a
backward stable algorithm can return results with large forward error
when the problem is ill-conditioned.

Now I want to build the same machinery for talking about problems in which
the inputs and outputs are vectors.

Norm!

First, we need the concept of a norm, which is a measure of the length of a
vector. One of the most popular norms is the Euclidean norm (or 2-norm):

]2 =

n
Z |z;|? = VaTlx.
i=1

We will also use the 1-norm and the co-norm (a.k.a. the max norm):

lzlh = i,

i

E——
In general, a norm is a function from a vector space into the real numbers
with three properties
1. Positive definiteness: ||z|| > 0 when z # 0 and ||0|| = 0.
2. Homogeneity: [|azx| = |o||z].
3. Triangle inequality: ||z + y|| < ||z|| + ||y||-

Second, we need a way to relate the norm of an input to the norm of
an output. We do this with matrix norms. Matrices of a given size form
a vector space, so in one way a matrix norm is just another type of vector
norm. However, the most useful matrix norms are consistent with vector
norms on their domain and range spaces, i.e. for all vectors x in the domain,

[Az || < [|A]][]

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Given norms for vector spaces, a commonly-used consistent norm is the in-
duced norm:

|| ||
Al = = max || Az||.
TP i

Question: Why is the second equahty true?
The matrix 1-norm and the matrix co-norm (the norms induced by the
vector 1-norm and vector co-norm) are:

|All1 = max (Z |aij> (max abs column sum)

Al = max (Z \aij) (max abs row sum)

If we think of a vector as a special case of an n-by-1 matrix, the vector 1-norm
matches the matrix 1-norm, and likewise with the oo-norm. This is how I
remember which one is the max row sum and which is the max column sum!

Absolute error, relative error, conditioning

Suppose I want to compute y = Ax, where A is a square matrix, but I don’t
know the true value of x. Instead, I only know & = x 4+ e and some bound
on |le]|. What can I say about the error in § = A% as an approximation to
y? I know the absolute error in ¢ is

g—y=At — Ax = A(z — x) = Ae,
and if I have a consistent matrix norm, I can write
19—yl < [[Alllle]
Remember, though, I usually care about the relative error:

1l [lell
Iyl Il

19—yl
[yl

< Al

If A is invertible, then # = A~!y, and so I can write

=l _ [IA”"yll

= < A7
Iyl Iyl

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Therefore,
19—yl el
< IAINA™ =
1yl]l
The quantity x(A) = ||A]|||A7!|| is the condition number for matrix multi-

plication. It is also the condition number for multiplication by the inverse
(solving a linear system).

[ll-conditioned matrices are “close to” singular in a well-defined sense: if
k(A) > 1, then there is a perturbation F, ||E| < [|A||, such that A + E is
singular. An exactly singular matrix (which has no inverse) can be thought
of as infinitely ill-conditioned. That is because if x is a null vector for A, an
arbitrarily small relative error in x can lead to an “infinite” relative error in
Az (since no nonzero vector can be a good approximation to a zero vector).

