Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 2: Monday, Jan 31

Problem du jour

What will the result of the following MATLAB code be?

X = 2;

% Loop 1

for k = 1:60
x = sqrt(x);

end

% Loop 2
for k = 1:60
x =x"2;

end

disp(x);

What is the condition number of the computation performed by loop 17 Is
it backward stable? What about loop 27

Logistics
1. HW 1 is due at the start of class Wednesday (2/2).
2. HW 2 is posted, and is due at the start of class next Wednesday (2/9).

3. Ivo’s office hours are Monday 11-12.

Miscellaneous comments

1. There are a few themes that we will see repeatedly in this class. Ap-
proximation by Taylor series is one of them. If I ask you a question
about approximation and you're not sure where to start, a Taylor ex-
pansion is usually not a bad guess.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

2. A few of you may have gotten confused by my use of order notation
for small quantities. But it’s basically the same as order notation for
large quantities. We say f(n) is O(g(n)) when f(n)/g(n) is bounded as
n — oo; we say f(x) is O(g(z)) when f(x)/g(z) is bounded as z — 0.
Similarly, f(n) is o(g(n)) when f(n)/g(n) — 0 as n — oo, and f(x)
is o(g(z)) when f(z)/g(z) — 0 as x — 0. Whether we're interested
in asymptotics as the argument approaches infinity or zero is usually
clear from context.

3. In HW 1, problem 2, there are really three functions:

flx) =logv1+x —logvw
f(x) = fi(f(z)) (computed by the MATLAB code)

f(@)

T

For very large values of x, f(r) approximates f(x) to high relative
accuracy. In contrast, the value f (A:c) returned by MATLAB loses a
great deal of accuracy, which is part of the point of the problem. When
I asked you to approximate the error in f (x) as an approximation to
f(x), what I really had in mind is to compute the error in f(z) as an
approximation to f(z); this latter approximation has a relative error
of O(z~1), which is pretty tiny when z = 10'". Get comfortable with
the idea of estimating error in an approximation by comparing to a
more accurate approximation — it will come up again. There is an art
to error analysis, and much of that art boils down to knowing what
approximations are useful in what settings.

IEEE floating point arithmetic

The IEEE 754 floating point standard defines a set of normalized double-
precision floating point numbers of the form:

(=1)* x L.byby...b, x 2¥, E = e — bias

In double precision, we have p = 52 bits, 11 bits for the exponent, and a bias
of 1023. There is also a single precision format (with 23 fraction bits and 8
bits for the exponent), but MATLAB uses double precision by default, and
we will henceforth assume double precision unless otherwise stated.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

The exponents e = 0 and e = 2047 (F = —1023 and F = 1024) have
special meanings:

1. For e = 0, we have subnormal numbers *:
(=1)% x 0.byby ... b, x 27102
The number zero is a special case.

2. For e = 2047, we have representations of inf, —-inf, and NaN (short for
Not a Number). For example, 1/0 returns inf, while 0/0 returns NaN.

The rule for floating point arithmetic is to return the exact result, correctly
rounded. Usually, “correctly rounded” means “rounded to the nearest floating
point number.” ?

We say there is an exception when the floating point result is not the
same as the exact result. The most standard exception is inezact (i.e. some
rounding was needed). Other exceptions occur when we fail to produce a
normalized floating point number with 53 bits of accuracy. These exceptions
are:

Underflow: An expression is too small to be represented as a normalized
floating point value. The default behavior is to return a subnormal.

Overflow: An expression is too large to be represented as a floating point
number. The default behavior is to return inf.

Invalid: An expression evaluates to Not-a-Number (such as 0/0)

Divide by zero: An expression evaluates “exactly” to an infinite value (such
as 1/0 or log(0)).

Question: What does 1-3*x(4/3-1) yield in double precision?

In Knowing Machines: Essays on Technical Change, sociologist Donald MacKenzie
tells the short version of the story of how subnormal numbers were accepted as part of the
IEEE floating point standard. I've heard the longer version of the story from W. Kahan,
and MacKenzie’s summary is accurate as I understand it. And I think it’s terrific that a
sociologist should end up writing about floating point arithmetic! When you find yourself
with some spare time, I recommend the essay in particular and the book in general.

2There are other rounding modes (round toward 0, round toward infinity) that are
sometimes useful, particularly for techniques like interval arithmetic.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Error analysis and a standard model

The rule for floating point arithmetic is to return the exact result, correctly
rounded. Usually, “correctly rounded” means “rounded to the nearest float-
ing point number.” It is hard to analyze errors using the “exact result,
correctly rounded” characterization of floating point. Instead, we usually
analyze floating point computations using a standard model for the behavior
of normalized floating point numbers in terms of a bound on relative error.
The model is that for ® € {+, —, x,/}, the floating point value fl(x ® y)
generated by computing z ® y in floating point is

fla®y) =(x®@y)(1+0), [0] < €mach-

In double precision, the machine epsilon® is €macy, = 27°% ~ 1071, This model
does not capture the behavior of subnormals or exceptional values, and it is
too pessimistic to describe some useful floating point tricks*. Nonetheless,
it is a simple way to understand the error behavior of most floating point
computations, and so is deservedly popular.®

As a simple example, consider the phenomenon of cancellation that we
described last time. Suppose that fl(x) = z(1 4 ;) and fi(y) = y(1 + d2) are
two positive floating point numbers; then

fi(z —y) = ((1+61) — y(1 4 d2))(1 + d3),

and - -
[z —y) = (z—y)| _ |xo1 — yd|
|z —y| |z —y|

where .
|51’ = |51 + 53 + 5153‘ S 2‘Emach

3For the purposes of this class, machine epsilon is the largest value § such that 1+ §
gets rounded to 1. According to some other authors, the machine epsilon is the distance
between 1 and the next largest floating point number.

4For example, if + and y are floating point numbers within a factor of two of each
other, then x — y is exactly representable in floating point. This actually simplifies life so
enormously that I will take advantage of it even though it uses a little more information
than “small relative error at each step.”

®You may decide for yourself if anything having to do with floating point should be
described properly as “popular.”

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

and similarly with d,. Thus, we have the error bound

(e —y) — (@ —y)| _

< 2epu TE Y]
|z — 9

lz -yl

This shows us what can go wrong with cancellation: if x and y are individu-
ally much larger than z —y, then the relative error in the computed difference
may be much larger than €.

Notice that we dropped a term in the above analysis: §;05 = O(€2,,.,)-
It is common to drop higher-order terms in this way, since it makes the
analysis more tractable, particularly when nonlinear functions are involved.
For example, for an exact floating point value z, I would usually write

AV +2) = (V1+2)(146/2),

implicitly using the fact that v1+0 =1+46/2 + O(€%,4.)-

mach
Question: Using this sort of linearization, derive an approximate relative

error bound for fi((1 — /1 — 22)/2).

Rounding in finite differences

Question: Suppose f(z) is computed to within a relative error of €pach.
Assuming x9 and x; are distinct and exactly representable in floating point,
estimate the relative error due to rounding in the evaluation of

fxz) — [l
flon,) = L2 = S@)
To — X1
For simplicity, assume z; and xq are close (certainly within a factor of two),
and similarly that f(x;) and f(x() are within a factor of two of each other®.

Answer: Let’s work term by term. Let’s start with the evaluations of f:

A(f(21)) = f(21)(1 + 61)
A(f(22)) = f(22)(1 + b2)
61f we didn’t make the assumptions, the analysis would not change substantially. But

these assumptions save a couple algebraic steps, and this sort of error analysis is tedious
enough without any more symbols flying about.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Assuming fi(f(x;)) and fi(f(z2)) are within a factor of two of each other, the
subtraction in the numerator incurs no additional error. The only error in
the computed difference is due to the function evaluations:

A(f(w2) — f(21)) = f(f(22)) — A(f(21))
fxo) = f(z1) + (f(22)02 — f(21)02)
= (f(w2) = f(z1)) (1 + dsup)

where

16t = f(22)02 — f(21)d2 < 2| f(21)]€macn
f(@2) = flz) |7 [f'(z)]|z2 — 24
If 29 and x; are within a factor of two, then there is also no error from this
subtraction:

ﬂ(ﬂfz — $1) = T9 — T1.

Therefore, the only additional error is due to the division:

fl (flz1, z2]) = flz1, 22)(1 4 dsub) (1 + daiv)
= fla1, 22)(1 + Ototar)

where

2/ f(x
|(5t0ta1| ~ ’(Ssub + 5div’ 5 (1 + |f(1)|) €mach-

|/ (1) |22 — 4]

Cumulative error in finite differences

The finite difference expression f[z,z5] is useful as an approximation to
f'(x1). Using a first-order Taylor expansion with remainder, we have

f[mla $2] =

As an approximation to f’(z1), the exact value of f|x, 25| has an error of
O(|za — x1]) — the smaller the difference, the better. This is an example
of truncation error. But fl(x[f1, x2]) approximates the true f|xy,z5] with an
error of O(€macn/|T2 — 1]) — the smaller the difference, the worse it gets!
The error is minimal when truncation and rounding error are the same size.

Figure 1 shows the tension between rounding error and truncation error
for this example. We use a log-log plot so that we can easily see the scaling

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

1078 |

\ \ \ \ \ \ \ \ \
107% 107 107*2 1071 107® 107% 107* 1072 10°
h

Figure 1: Relation between f’(x;) and f[zq,2; + h| for different steps h
(f(x) = 2% and x; = \/1/3). Missing points correspond to where the finite
difference computation returns exactly one.

behavior in terms of slopes. For step sizes larger than around /€nach ~ 1078,
the total error is dominated by truncation error (O(h), and so slope 1 on a
log-log plot). For step sizes smaller than \/€macn, the total error is dominated
by rounding (O(h™!), and so slope —1 on a log-log plot), except at a few
points where the finite difference approximation is accidentally exact.

