
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 1: Wednesday, Jan 26

Problems du jour

1. We can write 1/3 as a repeating decimal representation: 0.3333 . . ..
How would we write 1/3 as a repeating binary representation?

2. Suppose p and q are relatively prime. Under what circumstances can
p/q be represented as a finite decimal representation? A finite binary
representation?

3. For fun: Suppose p and q are relatively prime, p < q. What is the
maximum number of digits in the decimal or binary representation of
p/q before one sees repetition? Once you start repeating, what is the
maximum length of the (minimal) repeating sequence that occurs?

Logistics

• The Google group is by invitation only. If you received an invitation
but still can’t sign on, it may be because the invitation address was
not linked to your Google account. To remedy this:

1. Go to your Google Groups page (one of the menu links in iGoogle).

2. Click on the “my account” link at the top right.

3. There should be a list of email addresses listed under the “personal
settings” panel. Click the edit button at the bottom, and walk
through the next page to add your Cornell email address.

• If you drop or add the class, please send us a note so that we can keep
the CMS site and Google Groups enrollment up to date.

• Remember: HW 1 is due next Wednesday, Feb 2. It mostly involves
material we will cover in class today.

• We will start basic concepts of numerical linear algebra next week.
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Absolute and relative errors

Remember from last time:

• Absolute error is the difference between approximation and truth.

• Relative error is the absolute error scaled by the size of the true value.

• We usually care more about relative error than absolute error.

We generally can’t compute the exact error. If we could, we would have the
true value! Instead, we will usually try to bound the magnitude of errors.

Relative error is easy to define when we talk about scalar-valued functions.
When we talk about vector-valued functions, we have to clarify what we mean
by the “size”. We will talk more about measuring vectors (via norms) when
we talk about numerical linear algebra.

Sources of error

There are several common sources of error in scientific computation. In the
order we encounter them

Roundoff error: IEEE floating point arithmetic is essentially binary sci-
entific notation. The number 1/3 cannot be represented exactly as a
finite decimal. It can’t be represented exactly in a finite number of
binary digits, either. We can, however, approximate 1/3 to a very high
degree of accuracy.

Termination of iterations: Nonlinear equations, optimization problems,
and even linear systems are frequently solved by iterations that produce
successively better approximations to a true answer. At some point,
we decide that we have an answer that is good enough, and stop.

Truncation error: We frequently approximate derivatives by finite differ-
ences and integrals by sums. The error in these approximations is
frequently called truncation error.

Stochastic error: Monte Carlo methods use randomness to compute ap-
proximations. The variance due to randomness typically dominates
the error in these methods.



Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

In addition to error incurred during computation, of course, there is also
frequently error in the problem inputs.

Condition numbers and sensitivity

Suppose we want to evaluate a differentiable function f(x). Ordinary calculus
tells us how to estimate the error in the function value due to a small error
in the input:

|f(x+ e)− f(x)| = |f ′(x)||e|+ o(e).

That is, the absolute error in the output is roughly |f ′(x)| times the size
of the absolute error in the input. What if we want to know how much
relative error is amplified by a calculation rather than absolute error? Using
first-order Taylor expansions and a little algebra, we have

relative error in f =
|f(x(1 + δ))− f(x)|

|f(x)|

≈
∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ |δ|
= κf(x) × relative error in x

The multiplier κf(x) is called the condition number of the calculation. If this
number is very large, the problem of evaluating f is called ill-conditioned.
Note that the condition number is a feature of the problem formulation and
not a feature of the numerical method used to solve it. Very ill-conditioned
problems are typically hard to solve on the computer, since no matter how
carefully the computation is coded, tiny relative errors in the inputs (e.g.
due to rounding) can lead to huge relative errors in the outputs.

Digression: Conditioning of a root of a quadratic

Question: Recall that in our computation of π from lecture 1, we repeatedly
computed the smaller solution x of the quadratic equation

x2 − x+ z = 0

as a function of z. What is the approximate condition number for this prob-
lem when z (and therefore x) is small?
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We can approach this question in several ways.
Answer (version 1): The input is z; the output is the small root x.

Therefore, the condition number is

κ =

∣∣∣∣z(dx/dz)

x

∣∣∣∣ .
We can compute dx/dz = 1/(1− 2x) by implicit differentiation:

(2x− 1)
dx

dz
+ 1 = 0.

Therefore, if we also rearrange the quadratic to see z = x− x2, we have

κ =

∣∣∣∣ (x− x2)
x(1− 2x)

∣∣∣∣ =

∣∣∣∣ 1− x
1− 2x

∣∣∣∣ =
∣∣1 + x+O(x2)

∣∣
When x is very small, κ = 1 + x+O(x2) is very close to 1.

Answer (version 2): If x is small, then a good approximation (relative
error x!) is x2 − x ≈ −x. So

0 = x2 − x+ z/4 ≈ −x+ z/4.

This yields x ≈ z/4, and

x(1 + δ) ≈ −z(1 + δ)/4.

Answer (version 3): Remember the Taylor series for square roots
around 1: √

1 + y = 1 +
1

2
y +O(y2).

Using this in the quadratic formula gives

x =
1

2

(
1−
√

1− z
)

=
1

2

(
1− (1− z/2 +O(z2))

)
=
z

4
+O(z2)

From here, the analysis is the same as in version 2!
Answer (version 4): We know g(x) = x2 − x+ z/4 has a root close to

zero when z is small. Near zero, we can use the linear approximation

0 = g(x) ≈ g(0) + g′(0)x = z/4− x

This linear approximation again gives x ≈ z/4. You may recognize this as
one step of Newton’s method (which we will discuss more later in the class).
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Figure 1: The difference between f(x) had f̂(x) is forward error. If we can
interpret f̂(x) as f(x̂) for some x̂, then the difference between x and x̂ is
backward error.

Forward and backward error

We are used to thinking about error as the difference between a computed
value f̂(x) and a true value f(x). This is forward error. For ill-conditioned
problems, though, even the best algorithms can return results with bad for-
ward error, if only because of approximation of the input values.

We can also think about backward error. That is, instead of writing our
result in terms of an approximate function (f̂(x)), we write a result in terms
of an approximate input (f(x̂)). Numerical methods that always have small
relative backward error are sometimes called backward stable. An advantage
of using backward stable algorithms is that we can reason about their forward
error properties in terms of the condition number.

The relationship between forward and backward error is illustrated in
Figure 1.

Question: In the Archimedes example from lecture 1, was the standard
quadratic formula always backward stable?
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IEEE floating point arithmetic

I ran out of time, so this is doubtless one of the shortest summary of floating
point that I have ever given or will ever give, and it leaves out some details.
We’ll do this more thoroughly on Monday.

The IEEE 754 floating point standard defines a set of normalized double-
precision floating point numbers of the form:

(−1)s × 1.b1b2 . . . bp × 2E, E = e− bias

In double precision, we have p = 52 bits, 11 bits for the exponent, and a bias
of 1023. There is also a single precision format (with 23 fraction bits and 8
bits for the exponent), but Matlab uses double precision by default, and
we will henceforth assume double precision unless otherwise stated.

The rule for floating point arithmetic is to return the exact result, cor-
rectly rounded. Usually, “correctly rounded” means “rounded to the nearest
floating point number.” It is hard to analyze errors using the “exact result,
correctly rounded” characterization of floating point. Instead, we usually
analyze floating point computations using a standard model for the behavior
of normalized floating point numbers in terms of a bound on relative error.
The model is that for ⊗ ∈ {+,−,×, /}, the floating point value fl(x ⊗ y)
generated by computing x⊗ y in floating point is

fl(x⊗ y) = (x⊗ y)(1 + δ), |δ| ≤ εmach.

In double precision, the machine epsilon1 is εmach = 2−53 ≈ 10−16.

1For the purposes of this class, machine epsilon is the largest value δ such that 1 + δ
gets rounded to 1. According to some other authors, the machine epsilon is the distance
between 1 and the next largest floating point number.


