
Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

Week 1: Monday, Jan 24

Logistics

We will go over the syllabus in the first class, but in general you should look
at the class web page at

http://www.cs.cornell.edu/~bindel/class/cs3220-s11

The web page is your source for the syllabus, homework, lecture notes and
slides, and course announcements. For materials that are private to the class
(e.g. grades and solutions), we will use the Course Management System:

http://cms.csuglab.cornell.edu/web/guest

Course Overview

Scientific computing is about using computers to solve problems of science
and engineering (and sometimes other fields). These problems involve contin-
uous mathematics: real numbers, continuous functions, integrals, differential
equations, and so on. We will focus on numerical methods1 to solve these
problems.

To solve real-world scientific problems, we need to know about the ap-
plication (to ask questions that make sense), mathematical analysis (to for-
mulate a useful model and numerical methods to analyze it), and computer
science (to write fast, correct, robust solvers). In class, I gave three examples
from my own research:

• Computer-aided design tools for micro-electro-mechanical systems,

• Inference of the properties of computer networks,

• Discovery of overlapping communities in social networks.

One semester is not a long time – too short to cover background for most
real world problems. So we will focus on the computational aspects and the
mathematical analysis that goes with it. Our goal is to learn how to use
numerical methods wisely, and to craft fast, accurate, and robust soutions
using on standard techniques and libraries.

1There are also symbolic methods for analyzing continuous mathematics problems, but
we will not discuss these in our course.

http://www.cs.cornell.edu/~bindel/class/cs3220-s11
http://cms.csuglab.cornell.edu/web/guest

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

sin(2−2π)
1

2−2π

Figure 1: Computing the half side length of an inscribed 22-gon.

Tricky Teasers

One running theme in our class will be approximation. Even basic arithmetic
on the computer is approximate: the computer represents real numbers us-
ing floating point, a sort of (binary) scientific notation with some bells and
whistles. We will talk about this in more detail in the next lecture. For now,
I want to mention the bare minimum needed to discuss a couple examples:

• Suppose x̂ approximates x. The absolute error is e = x̂ − x. Absolute
error is not always helpful; a centimeter is a tiny error in a measurement
of the radius of the earth, but a huge error in a measurement of the
radius of a hair. The relative error δ = (x̂ − x)/x is often a better
measure.

• Double precision floating point numbers (the kind used by default in
Matlab) have a significand 53 bits long — that’s about 16 decimal
digits. Basic arithmetic operations in floating point follow the rule
compute the exact result, correctly rounded.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

An Approximation Algorithm of Archimedes

Archimedes estimated the value of π by computing the semiperimeter of
regular N -sided polygons (N -gons) inscribed in a unit circle (Figure 1):

π ≈ 1

2
side length of N -gon×N = sin

(π
N

)
×N.

We will look at the semiperimeters of 2k-gons:

sk = 2k sin(2−kπ).

If we define xk = sin2(2−kπ), we can relate xk to xk−1:

x2k − xk +
1

4
xk−1 = 0.

We know that x2 = 1/2 (the side length of an inscribed square is 1), so we
can write a little Matlab program that recursively computes values of xk
to get ever better estimates of π:

% s = lec01pi(kmax)
%
% Compute semiperimeters s(k) of 2ˆk−gons for k = 2:kmax.

function s = lec01pi(kmax)

x = zeros(1,kmax);
x(2) = 0.5;
for k = 3:kmax

x(k) = (1 − sqrt(1−x(k−1)))/2;
end
s = 2.ˆ(1:kmax) .∗ sqrt(x);

The results of the computation are shown in Figure 2. Clearly, something
has gone awry; the semiperimeter for a 230-gon (with about a billion sides) is
computed to be zero! The question is: what should have happened in exact
arithmetic, what went wrong in floating point, and how might we fix it?

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

0 5 10 15 20 25 30
10−10

10−8

10−6

10−4

10−2

100

k

|ŝ
k
−
π
|/
π

Figure 2: Error in estimating π by 2k-gon semiperimeters from lec01pi.

Analyzing Archimedes

Using Taylor series, we can write

sk = 2k

(
(2−kπ)− 1

6
(2−kπ)3 +O(2−5k)

)
= π

(
1− π2

6
2−2k +O(2−4k)

)
.

Thus in exact arithmetic, the relative error in approximating π by sk is

|sk − π|
π

≈ π2

6
2−2k.

This is exactly the behavior we see in the Matlab calculation until k ≈ 14,
corresponding to a relative error of about 6× 10−9. After that, the floating
point values ŝk become successively worse approximations to π, until we reach
a 100% relative error with ŝ30 = 0.

Now, consider what would happen even if we had the exact value of x29
and tried to use it to compute x30. We know that the true value of x29 should
be very close to 2−58π2, or about 3 × 10−17. Therefore, when we compute
1− x29 and round to 16 places, we get a computed value of 1. This yields

x̂29 = 1−
√

1 = 0,

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

n

Ên

1/(n+ 1)

Figure 3: Computed values Ên compared to a supposed upper bound.

at which point the calculation falls flat on its face.
This problem with inaccurate calculation of the smaller root of a quadratic

is a classic example of the perils of cancellation. It is described in Heath,
and there is an exercise on it in at the end of the first chapter of Moler. I
recommend you read these references before tackling the homework problem
in which you are asked to modify lec01pi so that ŝk maintains good accuracy
by modifying the calculation of x̂k.

An Integral Iteration

Consider En =
∫ 1

0
xnex−1 dx. We can derive a recurrence for En by repeated

integration by parts:∫ 1

0

xnex−1 dx =
[
xnex−1

]1
0
−
∫ 1

0

nxn−1ex−1 dx

= 1− nEn−1.

We know that the true values of En satisfy

1

e(n+ 1)
< En <

1

n+ 1

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

with En approaching the upper bound of 1/(n+1) as n gets large. In contrast,
Figure 3 shows what happens to the computed floating point values Ên when
we run the recurrence forward. Things appear to be fine until around n = 17.
But we compute a negative number for Ê18 and a number that is far too
large for Ê19. If we continue running the recurrence forward, we will find
Ê20 ≈ −30 and Ê30 ≈ −3.3× 1015! Again, the question: what went wrong?

Analyzing the Integral Iteration

Suppose that we were able to evaluate the recurrence for En with no errors
save for the roundoff error in evaluating E0. That is, suppose that the true
integrals En and the approximations Ên exactly satisfy the recurrences

En = 1− nEn−1, E0 = 1− 1/e,

Ên = 1− nÊn−1, Ê0 = 1− 1/e+ ε0.

We can derive a recurrence for εn = Ên −En by subtracting the recurrences
for Ên and En:

εn = (1− nÊn−1)− (1− nEn−1) = n(Ên−1 − En−1) = nεn−1.

Therefore, εn = n! ε0. This is a truly ferocious amplification of the initial
error. Note that 18! ≈ 6.4×1015, so even without any intermediate rounding
errors, the roundoff error in the initial condition Ê0 will be magnified until
after 18 steps it is of the same order of magnitude as the true value E18.

Unlike the previous example, there is no simple equivalent formulation of
the recurrence that will make the problem disappear. The method is intrin-
sically unstable. There is a fix, though. If we run the recurrence backward
from the initial condition ÊN = 0 for sufficiently large N , we quickly get very
accurate estimates for the true values of En. The same forces that amplify
error when we recurse forward will supress errors when we recurse backward.

The Takeaway

Approximation is an inherent part of scientific computing. Even the simple,
seemingly “exact” quadratic formula can be dangerous if we fail to recognize
the approximation due to floating point arithmetic. Furthermore, small ini-
tial errors can be amplified over the course of a calculation until the final

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220)

result computed bears no resemblance to the correct answer. We need to
understand these approximations if we are to build codes that return mean-
ingful results (not to mention building useful test cases!).

