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Lawson criterion

Figure of merit: nTrr where

- nis number density
- Tis temperature

- 7¢ 1S energy confinement time

Min value required at T = 14 keV (about 162 x 10° K) is

nTre > 3.5 x 108 Ks/m’



Magnetic confinement basics
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The big name: Tokamaks

Inner poloidal field coils
(primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
- (for plasma positioning and shaping)

Toroidal field coils

Resulting helical magnetic field
Toroidal magnetic field

Plasma electric current
(secondary transformer circuit)


https://dx.doi.org/10.1155/2014/940965




Stellarator Concept

Magnetic surfaces & plasma
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Wendelstein 7-X Machine

Operating since 2015-12-10;
plasma discharges lasting several min.
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Wendelstein 7-X Poincaré Plots
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https://commons.wikimedia.org/wiki/File:
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Poincaré Features (NCSX)
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“An Introduction to Stellarators” (2020)
Imbert-Gerard, Paul, and Wright.
https://arxiv.org/abs/1908.05360
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https://arxiv.org/abs/1908.05360

A Non-Stellarator Test Problem
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Birkhoff Average

Illustrate with standard (Chirikov-Taylor) map

Xt41 = Xt + Yey1 mod 1

0.7 .
Vir1 = Vi — P sin(2mxt)
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Plan in Pictures

Circles Islands
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- Iterating gives a Poincaré plot showing
- X and O points (hyperbolic and elliptic periodic points)
- Invariant circles and island chains (quasiperiodic orbits)
- Chaos

- Goal: Identify these structures cheaply and automatically
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Processing Poincaré Plots

1. Make a Poincaré plot and eyeball it

2. Parameterization method
3. Form a function with invariant level sets

- Birkhoff averaging

- Weighted Birkhoff averaging

- Adaptive weighted Birkhoff (*)
- Learned labels (*)

4. Model dynamics for a field line (*)



Parameterization method

Goal: z: T — R? st.
F(2(8)) = 2(6 + w).

Discretize via Fourier:

m
2(0) = ) 2y exp(2mind)

n=—m

Solve nonlinear least squares problem

N—1
min > " ||z(i/N) — F(z(i/N + w))|’

i=0

with two additional constraints (phase + which circle).

Usually combine with continuation (e.g. from fixed point of F).



Learned Labels

Goal: Find (non-constant) h st. hoF = h.

Discretize via favorite ansatz, e.g. h = Z}L cio(I1x — x;]).
Define h(x;) = y; and h(F(x;)) = v}, solve (for example)

o 1 3
minimize gyTK”er EHy—yH2 sty =V

to encourage h smooth, non-constant, invariant under F.



Birkhoff Average

Consider f: Q — Q symplectic, h € C*(Q)
Define Birkhoff average:
1K
Bilh](x) = == > _(ho F)(x).

K+1k:0

Birkhoff-Khinchin: for h € £, converges a.e. to conditional
expectation of an invariant measure on an invariant set.

Error behavior By[h](x) — h(x)?

- Invariant circle/island? O(K=")
- Chaos? O(K=1/2)

Rates signal regular vs chaotic (“stochastic”) trajectories.
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Birkhoff Average

ldeas:

- Invariant sets as level sets of Birkhoff average

- Convergence rates as signal of regularity vs chaos

Converges in the long run - but in the long run, we are all dead.
(with apologies to Keynes)

Related: Learn a continuous, nonconstant h st.h=hoF.
Can do pretty well with kernel interpolation ansatz - a topic
for another talk.
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Weighted Birkhoff average

error

Sander and Meiss, Physica D, 411 (2020) p. 132569;
Das, Sander, and Yorke, Nonlinearity, 30 (2017), pp. 4111-4140

Weighting accelerates regular convergence to super-algebraic:
K
WBKIh](X) = Y wik(h o F*)(x).
k=0
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Signal Processing Perspective

Parameterize z(6) for invariant circle

F(2(6)) = 2(0 +w), 2(6) =) 2y exp(2rine)
NEZ
Trajectory z; = z(wt) has series expansion
Zt = Z?nfnt, & = exp(2miw)
NEZ
Observables ht = h(z;) can be similarly expanded
he=3"hoe™, =ho
nez
Weighted Birkhoff starting from xo

K
Blhl(x0) = > hnpi(€"), i) = wix"
nez k=0
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Signal Processing Perspective
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Signal Processing Perspective: Adaptive Filtering
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Adaptive Filtering

Series for hy = h(z)

ht = Z F’nfnt

nez

Filtered/accelerated series with polynomial p:

AWBKIh(x) = > hn€™p(€") = hn
nez
How do we adaptively choose the filter polynomial?
Desiderata for this to work:
- Fast enough decay of F)n

- “Sufficiently irrational” w (Diophantine condition)
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(Vector) Reduced Rank Extrapolation

Assume
he=ho+) M (eg An=¢")
n=£0
Difference sequence removes mean:
Ut = ht—H = ht = Z()\n = 1)F’mAEn
n#0
Seek coeffs ¢, to minimize
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- Can (and do) use vector observables
- Rectangular Hankel matrix = fast matvecs via FFT
- Solve least squares problem with LSQR

- Constrain for time reversibility = palindromic
polynomial:
Cj = Ck—j

Roots come in inverse pairs (generally on unit circle)

- Measure convergence adaptively via residual
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(Vector) Reduced Rank Extrapolation

Standard vector RRE convergence (Sidi, Vector Extrapolation
Methods with Applications): if | ;| are in descending order,
error for Kth extrapolated average goes like

EO,K - EO = O(AilfH)

But for us everything is on the unit circle!

Alternate analysis gives super-algebraic convergence given

- Enough smoothness of circle (decay of |A,| with |n|)

- “Sufficient irrationality” (Diophantine condition) so &,
doesn’t get too close to 1 too fast.
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Weighted Birkhoff vs RRE
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Still good for classification.convergence slightly faster than
weighted Birkhoff.
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Residuals and Regularity

Use least squares residual to judge “circleness.”

1.0

Log Least Squares Residual

(Hard cases near rational rotational transform)
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Post-Processing (Filter Diagonalization)

Why use the RRE model just for averaging?

1. Form filter polynomial with coefficients ¢
2. Find natural frequencies / polynomial roots

3. Sort by contribution to signal
4. Of 10 most contributing frequencies, identify rationals
(Sander & Meiss)
- Yes: island chain — RRE on gth step
- No: call largest the rotational transform

5. Project signal onto Fourier modes

Get shape and characteristics of circles and islands.
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Wistell Stellarator Configuration

- 1000 random trajectories (via RK4 on interpolated B field)
° [Kere = 00, Ve = 900
- Residual tolerance = 10~°
- Rational tolerance = 107
34



Wistell Analysis

Residual

Log Least Squares Residual

55

Chaos
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Concluding Notes

- Extrapolation pros
- Classifies chaos vs regular trajectories
- Recovers invariant circles/islands
- No need for continuation or initial guesses
- Parallelizable over trajectories
- Cons
- Problems near low-order rationals
- Linear algebra adds extra cost vs weighted Birkhoff
- Higher dimensions?
- Relevant beyond field line flow (guiding center approx)
- Invariant sets are more complicated
- The “model the trajectory” philosophy should still work
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Magnetic surfaces & plasma

https://github.com/maxeruth/SymplecticMapTools.jl
https://hiddensymmetries.princeton.edu/
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