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Who?

Simons Collaboration: “Hidden Symmetries and Fusion Energy”

https://hiddensymmetries.princeton.edu/

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder,
UW Madison, EPFL, ANU, UT Austin, U Arizona.

• Phase 1: Sep 2017-Aug 2022
• Phase 2: Sep 2022-Aug 2025
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https://hiddensymmetries.princeton.edu/


D-T fusion
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Lawson criterion

Figure of merit: nTτE where

• n is number density
• T is temperature
• τE is energy confinement time

Min value required at T = 14 keV (about 162× 106 K) is

nTτE ≥ 3.5× 1028 K s/m3
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Magnetic confinement basics
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Magnetic confinement basics
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Magnetic confinement basics
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The big name: Tokamaks
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https://dx.doi.org/10.1155/2014/940965


ITER
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Stellarator Concept
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Wendelstein 7-X Machine

Operating since 2015-12-10;
plasma discharges lasting several min.
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Wendelstein 7-X Poincaré Plots

https://commons.wikimedia.org/wiki/File:
Stellarator_magnetic_field.png
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https://commons.wikimedia.org/wiki/File:Stellarator_magnetic_field.png
https://commons.wikimedia.org/wiki/File:Stellarator_magnetic_field.png


Poincaré Features (NCSX)

“An Introduction to Stellarators” (2020)
Imbert-Gerard, Paul, and Wright.

https://arxiv.org/abs/1908.05360
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https://arxiv.org/abs/1908.05360


A Non-Stellarator Test Problem

Illustrate with standard (Chirikov-Taylor) map

xt+1 = xt + yt+1 mod 1

yt+1 = yt −
0.7
2π sin(2πxt)
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Plan in Pictures

Circles Islands Chaos

• Iterating gives a Poincaré plot showing
• X and O points (hyperbolic and elliptic periodic points)
• Invariant circles and island chains (quasiperiodic orbits)
• Chaos

• Goal: Identify these structures cheaply and automatically
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Processing Poincaré Plots

1. Make a Poincaré plot and eyeball it
2. Parameterization method
3. Form a function with invariant level sets

• Birkhoff averaging
• Weighted Birkhoff averaging
• Adaptive weighted Birkhoff (*)
• Learned labels (*)

4. Model dynamics for a field line (*)
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Parameterization method

Goal: z : T → R2 s.t.

F(z(θ)) = z(θ + ω).

Discretize via Fourier:

ẑ(θ) =
m∑

n=−m
ẑn exp(2πinθ)

Solve nonlinear least squares problem

min
N−1∑
i=0

∥z(i/N)− F(z(i/N+ ω))∥2

with two additional constraints (phase + which circle).

Usually combine with continuation (e.g. from fixed point of F).
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Learned Labels

Goal: Find (non-constant) h s.t. h ◦ F = h.

Discretize via favorite ansatz, e.g. h =
∑m

j=1 cjϕ(∥x− xj∥).
Define h(xj) = yj and h(F(xj)) = y′j, solve (for example)

minimize η

2y
TK−1y+ 1

2∥y− ỹ∥2 s.t. yi = y′i
to encourage h smooth, non-constant, invariant under F.
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Birkhoff Average

Consider f : Ω → Ω symplectic, h ∈ C∞(Ω)

Define Birkhoff average:

BK[h](x) =
1

K+ 1

K∑
k=0

(h ◦ Fk)(x).

Birkhoff-Khinchin: for h ∈ L1, converges a.e. to conditional
expectation of an invariant measure on an invariant set.

Error behavior BK[h](x)− h̄(x)?

• Invariant circle/island? O(K−1)
• Chaos? O(K−1/2)

Rates signal regular vs chaotic (“stochastic”) trajectories.
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Birkhoff Average

Ideas:

• Invariant sets as level sets of Birkhoff average
• Convergence rates as signal of regularity vs chaos

Converges in the long run – but in the long run, we are all dead.
(with apologies to Keynes)

Related: Learn a continuous, nonconstant h̄ s.t. h̄ = h̄ ◦ F.
Can do pretty well with kernel interpolation ansatz – a topic
for another talk.
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Weighted Birkhoff average

Sander and Meiss, Physica D, 411 (2020) p. 132569;
Das, Sander, and Yorke, Nonlinearity, 30 (2017), pp. 4111-4140

Weighting accelerates regular convergence to super-algebraic:

WBK[h](x) =
K∑

k=0
wk,K(h ◦ Fk)(x).
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Signal Processing Perspective

Parameterize z(θ) for invariant circle

F(z(θ)) = z(θ + ω), z(θ) =
∑
n∈Z

ẑn exp(2πinθ)

Trajectory zt = z(ωt) has series expansion

zt =
∑
n∈Z

ẑnξnt, ξ = exp(2πiω)

Observables ht = h(zt) can be similarly expanded

ht =
∑
n∈Z

ĥnξnt, h̄ = ĥ0

Weighted Birkhoff starting from x0

BK[h](x0) =
∑
n∈Z

ĥnpK(ξn), pK(z) =
K∑

k=0
wk,Kzk
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Signal Processing Perspective
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Signal Processing Perspective
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Signal Processing Perspective: Adaptive Filtering
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Adaptive Filtering

Series for ht = h(zt)
ht =

∑
n∈Z

ĥnξnt

Filtered/accelerated series with polynomial pK:

AWBK[h](xt) =
∑
n∈Z

ĥnξntpK(ξn) → ĥn

How do we adaptively choose the filter polynomial?

Desiderata for this to work:

• Fast enough decay of ĥn
• “Sufficiently irrational” ω (Diophantine condition)
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(Vector) Reduced Rank Extrapolation

Assume
ht = ĥ0 +

∑
n ̸=0

λtn (e.g. λn = ξn)

Difference sequence removes mean:

ut = ht+1 − ht =
∑
n ̸=0

(λn − 1)ĥmλtm

Seek coeffs ck to minimize
T−1∑
t=0

( K∑
k=0

ckuk+t

)2
s.t.

K∑
k=0

ck = 1.

Accelerated series is

h̃t =
K∑

k=0
ckhk+t.

27



Details

• Can (and do) use vector observables
• Rectangular Hankel matrix =⇒ fast matvecs via FFT
• Solve least squares problem with LSQR
• Constrain for time reversibility =⇒ palindromic
polynomial:

cj = cK−j

Roots come in inverse pairs (generally on unit circle)
• Measure convergence adaptively via residual
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(Vector) Reduced Rank Extrapolation

Standard vector RRE convergence (Sidi, Vector Extrapolation
Methods with Applications): if |λj| are in descending order,
error for Kth extrapolated average goes like

ĥ0,K − ĥ0 = O(λ2KK+1).

But for us everything is on the unit circle!

Alternate analysis gives super-algebraic convergence given

• Enough smoothness of circle (decay of |ĥn| with |n|)
• “Sufficient irrationality” (Diophantine condition) so ξn
doesn’t get too close to 1 too fast.
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Weighted Birkhoff vs RRE

Still good for classification.convergence slightly faster than
weighted Birkhoff.
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Residuals and Regularity

Use least squares residual to judge “circleness.”

(Hard cases near rational rotational transform)
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Post-Processing (Filter Diagonalization)

Why use the RRE model just for averaging?

1. Form filter polynomial with coefficients c
2. Find natural frequencies / polynomial roots
3. Sort by contribution to signal
4. Of 10 most contributing frequencies, identify rationals
(Sander & Meiss)

• Yes: island chain — RRE on qth step
• No: call largest the rotational transform

5. Project signal onto Fourier modes

Get shape and characteristics of circles and islands.
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Island Identification
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Wistell Stellarator Configuration

• 1000 random trajectories (via RK4 on interpolated B field)
• Kmax = 300, Tmax = 900
• Residual tolerance = 10−6

• Rational tolerance = 10−6
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Wistell Analysis

Residual Chaos

Circles Islands
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Concluding Notes

• Extrapolation pros
• Classifies chaos vs regular trajectories
• Recovers invariant circles/islands
• No need for continuation or initial guesses
• Parallelizable over trajectories

• Cons
• Problems near low-order rationals
• Linear algebra adds extra cost vs weighted Birkhoff

• Higher dimensions?
• Relevant beyond field line flow (guiding center approx)
• Invariant sets are more complicated
• The “model the trajectory” philosophy should still work
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Fin

https://github.com/maxeruth/SymplecticMapTools.jl
https://hiddensymmetries.princeton.edu/
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