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Who?

Simons Collaboration: “Hidden Symmetries and Fusion Energy”

https://hiddensymmetries.princeton.edu/

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder,
UW Madison, EPFL, ANU, UT Austin, U Arizona.

• Phase 1: Sep 2017-Aug 2022
• Phase 2: Sep 2022-Aug 2025
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D-T fusion
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Lawson criterion

Figure of merit: nTτE where

• n is number density
• T is temperature
• τE is energy confinement time

Min value required at T = 14 keV (about 162× 106 K) is

nTτE ≥ 3.5× 1028 K s/m3
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Magnetic confinement basics
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Magnetic confinement basics
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Magnetic confinement basics
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The big name: Tokamaks

8

https://dx.doi.org/10.1155/2014/940965


ITER
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Trouble with Tokamaks

• Toroidal and poloidal coils produce a helical B
• Also a strong current (which affects the field)
• Prone to disruption (a bad instability)
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Stellarator Concept
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Wendelstein 7-X Machine

Operating since 2015-12-10;
plasma discharges lasting several min.
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Trouble with Stellarators

• Stability is not such an issue
• More “neo-classical” (low-collisionality) transport — bad
for confinement

• Control neo-classical transport by quasisymmetry (|B| has
a symmetry in Boozer coordinates)
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Stellarator Quality Measures

What makes an “optimal” stellarator?

• Approximates field symmetries (which measures?)
• Satisfies macroscopic and local stability
• Divertor fields for particle and heat exhaust
• Minimizes collisional and energetic particle transport
• Minimizes turbulent transport
• Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations,
uncertainties, and computational costs.
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What Makes a Good Stellarator?
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How Do We Optimize? (STELLOPT Approach)

Optimizer Calculate χ2

(physics + engineering targets)

Adjust plasma boundary
(or coil shape)

Solve 3D
equilibrium

r(ϕ, θ) + iz(ϕ, θ) =
∑
αm,nei(mϕ−nθ)
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Challenges

1. Costly and “black box” physics computations
• Each step: MHD equilibrium solve, transport, coil design, ...
• Several times per step for finite-difference gradients

2. Managing tradeoffs
• How do we choose the weights in the χ2 measure? By gut?
• Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
• What you simulate ̸= what you build!

4. Global search
• How to avoid getting stuck in local minima?
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Progress of the Simons collaboration

• Collaboration has made a lot of progress (though work
remains) on

• Fast equilibrium solvers (NYU, Arizona, Flatiron)
• Faster simulations, with derivatives (NYU, Maryland,
Princeton)

• Optimizing under uncertainty (Greifswald, Cornell)
• Producing plasmas with high quasisymmetry (Maryland,
Princeton)

• More limited progress on
• Global search (though some with TuRBO)
• Fast and accurate proxies for turbulent transport
• Optimizing with instabilities (micro/macro)
• Optimization of divertors
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Cornell work

Rest of the session on two Cornell-centered projects:

• Optimization under uncertainty
• Multi-objective optimization
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Optimization Under Uncertainty

Low construction tolerances:
• NCSX: 0.08%
• Wendelstein 7-X: 0.1% – 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to
• Changes to control parameters
• Uncertainty in physics or model
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Risk-neutral OUU

Want efficient OUU in ∼ 200 dimensions

min
x∈Ω

EU[f(x− U)]
21



(Recent) Prior: Monte Carlo Approach

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
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Entries 100000
Mean 7.071
Std Dev 0.3034
f(x0) 6.65137
10% 7.48375
5% 7.60976
2% 7.83457
1% 8.03636

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
f(x0) 5.38718
10% 5.83611
5% 5.96501
2% 6.0585
1% 6.1137

f(x0)
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Robustness & mean perf greatly improved (w/ ∼ 108 evals)
J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen,
Improved performance of stellarator coil design optimization,

Journal of Plasma Physics, 2020. 22



Our Approach: fast TuRBO-ADAM

Black: ref; red: TuRBO-ADAM 10mm; blue: TuRBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

• Global search with modified TuRBO
• Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget. 23



Big Picture

Interpolation / regression / supervised learning:

• Choose an approximation family F
• Global bases (Fourier, polynomial, etc)
• Local bases (e.g. piecewise polynomials)
• Gaussian processes or splines
• Neural networks
• etc

• Choose s ∈ F to agree with data about f
• May need regularization / priors
• May acquire data adaptively

• Use s in lieu of f

Error bounds: Consistency (how close f is to F ) + stability

24



Curse of Dimensionality

Suppose f : Ω ⊂ Rd → R has m derivatives. Worst-case
approximation error over Ω scales with measurements n like

∥f− f̂∥∞ ∼ diam(Ω)n−m/d.

Optimal rate for global opt differs by a constant.
(Local optimization is a different problem.)

Sample efficiency requires:

• Lots of smoothness (large m)
• Low-dimensional structure (small “effective” d)
• Or some other structure (sometimes w/o justification)

Usually do have more structure...
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Gaussian Processes (GPs)
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Being Bayesian
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Matérn and SE kernels
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Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

When X is unambiguous, we will sometimes just write K.
29



Being Bayesian

Now consider prior of f ∼ GP(µ, k), noisy measurements

fX ∼ y+ ϵ, ϵ ∼ N(0,W), typically W = σ2I

Posterior is f ∼ GP(µ′, k′) with

µ′(x) = µ(x) + KxXc K̃ = KXX +W
k′(x, x′) = Kxx′ − KxXK̃−1KXx′ c = K̃−1(y− µX)

The expensive bit: solves with K̃.
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Bayesian Optimization (BO)

Typical GP-based BO:

• Evaluate f on initial sample in Ω

• Condition a GP on sample data
• Until budget exhausted

• Optimize acquistion function α(x) over Ω
(e.g. αEI(x) = E [[f(xbest)− f(x)]+] where xbest is best so far)

• Evaluate at selected point
• Update the GP model (including hyper-parameters)

• Standard cost: O(n3) per step (with n data points)

Great for modest budgets — but no escape from the Curse!
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Multi-Start

To avoid the Curse, we need an assumption!

So: suppose d large, but not too many minimizers:

• Choose M starting points scattered over Ω
• Run local minimizer (gradient descent, Newton, etc)
• Hope for at least one start per convergence basin

Q: How to allocate effort to different starts?
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TuRBO: Trust-Region BO

For high-d: combine local BO with multi-start strategy

• Rough global sampling at M points
• Local GP models and trust-region around each point
• Thompson sampling to choose which local model (and
trust region) to refine next

(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)
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TuRBO + OUU

• TuRBO builds GP models for f(x) (nominal objective)
• Simple transform from GP for f(x) to GP for EU[f(x+ U)]
(Beland and Nair, 2017)

Problem: TuRBO explores a lot — want more refinement
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Stochastic Gradient Descent (SGD)

Ordinary gradient descent is

xk+1 = xk − αk∇ϕ(xk)

SGD is
xk+1 = xk − αkgk

where gk is a random draw, E[gk] = ∇ϕ(xk).

For ϕ(x) = EU[f(x+ U)], use gk = ∇f(xk + uk).

Convergence is slow (O(1/m)), but steps can be cheap.
Speed depends a lot on variance of gradient estimator.
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Adam + Control Variates

• Regular Adam: stochastic gradient algorithm with
“adaptive momentum” for step size control. Use directions

g(x) = ∇f(x+ U)

for a random draw U (can also do mini-batch).
• Variance reduction with control variates (Wang, Chen,
Smola, Xing, 2013)

g(x) = ∇f(x+ U) + α(ĝ(x)− E[ĝ(x)])
ĝ(x) = ∇f(x) + HU.

• True Hessian not avail, so set H to be an approximate
Hessian (BFGS approximation via gradients from Adam).
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Additional Information

Multi-output GPs model f : Ω ⊂ Rd → Rk

• Model covariance over space and across outputs.
• Example: function values + derivatives

µ∇(x) =
[
µ(x)

∇xµ(x)

]
, k∇(x, x′) =

[
k(x, x′) (∇x′k(x, x′))T

∇xk(x, x′) ∇2k(x, x′)

]

• Can also model multi-fidelity sims, etc

Pro: FOCUS provides gradients, easy to incorporate!
Con: Matrix dimensions scale like n(d+ 1)
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Latest and Greatest

Idea: variational approximate inference with derivatives

• Assume posterior of a given functional form
• Minimize evidence lower bound (ELBO) via Adam
• Demo with half a million FOCUS runs (n = 500K, d = 45)

(Bindel, Gardner, Huang, Padidar, Zhu, NeurIPS 2021)
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Constrained and Multi-Objective

Naive: put everything we care about in a nonlinear LS problem

• fk(x) is deviation from kth target
• Add some weighting (chosen by the user)

But is this actually what we want?

• Choice of target values is unclear
• Choice of weights is unclear

And there are reasons for numerical nervousness:

• Maybe too few objectives (underdetermined LS problems)
• Maybe poorly conditioned (esp. with “large” weights)
• May not have small residual
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Tackling Constraints

General problem

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Convert into unconstrained optimization / nonlinear equation
solving problem with:

• Fewer degrees of freedom (constraint elimination)
• Same degrees of freedom (penalties and barriers)
• More degrees of freedom (Lagrange multipliers)

Constraint elimination usually only for linear constraints.
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KKT Conditions

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Define the Lagrangian

L(x, λ, µ) = ϕ(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

KKT conditions are

∇xL(x∗) = 0
ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness
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Penalties and Barriers

Want to minimize

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Instead minimize for small γ

ψγ(x) = ϕ(x) + 1
2γ

∑
i∈E

ci(x)2 − γ
∑
i∈I

log(−ci(x)).

Note that at minimizer x∗:

∇ψγ(x∗) = ∇ϕ(x∗) +
∑
i∈E

λ̃i∇ci(x∗) +
∑
i∈I

µ̃i∇ci(x∗)

where Lagrange multiplier estimates come from the ci:

λ̃i = ci(x∗)/γ, µ̃i = γ/ci(x∗)

Standard trick: Penalty to estimate multipliers.
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Managing Tradeoffs

What about using nonlinear least squares for tradeoffs?

More generally, consider f : Rn → Rm, maybe minimize

wTf(x) =
m∑
k=1

wkfk(x).
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Incompleteness of χ-square Combination

Structural Optimization 14, 63-69 @ Springer-Verlag 1997 

A closer look at drawbacks of minimizing weighted sums of 
object ives  for Pareto  set generation in multicriteria opt imizat ion 
problems 

I. D a s  a n d  J .E .  D e n n i s  

Department of Computational and Applied Mathematics, Rice University of Houston, TX 77251-1892, USA 

A b s t r a c t  A standard technique for generating the Pareto set 
in multicriteria optimization problems is to minimize (convex) 
weighted sums of the different objectives for various different set- 
tings of the weights. However, it is well-known that this method 
succeeds in getting points from all parts of the Pareto set only 
when the Pareto curve is convex. This article provides a geomet- 
rical argument as to why this is the case. 

Secondly, it is a frequent observation that even for convex 
Pareto curves, an evenly distributed set of weights falls to produce 
an even distribution of points from a]l parts of the Pareto set. This 
article aims to identify the mechanism behind this observation. 
Roughly, the weight is related to the slope of the Pareto curve in 
the objective space in a way such that an even spread of Pareto 
points actually corresponds to often very uneven distributions of 
weights. Several examples are provided showing assumed shapes 
of Pareto curves and the distribution of weights corresponding to 
an even spread of points on those Pareto curves. 

rain F ( x )  = 
x c C  

where 

1 I n t r o d u c t i o n  

Many problems in a wide variety of engineering disciplines 
are characterized by the need to minimize several nonlinear 
functions of the variables simultaneously. For example, a typ- 
ical bridge-construction design might involve simultaneously 
minimizing the total mass of the structure and maximizing 
its stiffness. An airplane design problem might require max- 
imizing fuel efficiency, payload, and minimizing the weight 
of the structure. Such multicriteria problems can be mathe- 
matically expressed as 

/1(~) 
h(~) 

n > 2 (MOP) 

/n(x)  

C = { x : h ( x ) = 0 ,  g(x) < 0 ,  a < x K b } ,  

F : H~ N ~-+ ~ n  , h : ~ N  ~_+ H~nean d g : lt~N ~_+ ~ n i  

are twice continuously differentiable mappings and a G (JT~ U 
{-co})  N, b C (~U{oo})  N, g being the number of variables, 
n the number of objectives, ne and ni the number of equality 
and inequality constraints. 

Since no single x* would in general minimize every f i  
simultaneously, a concept of optimality which is useful in the 
multiobjective framework is that of Pareto optimality. To 

acquaint readers not familiar with the concept, it is defined 
below. 

Definition. A point x* C C is said to be (globally) Pareto 
optimal or a (globally) efficient point or a nondominated or 
a noninferior point for (MOP) if and only if there does not 
exist x E C such that F(x)  _< F ( x * )  with at least one strict 
inequality (the _< implies term-by-term inequality). 

A very popular approach for converting this multicriteria 
problem into a scalar optimization problem is to minimize a 
convex combination of the different objectives (see e.g. Koski 
1988; Jahn c t a l .  1991). In other words, n weights w i are 
chosen such that w i > 0, i = 1 , . . . ,  n and ~ n = l  w i = 1 and 
the following problem is solved: 

n 

min ~ w i f i ( x  ) = wT F ( x )  , 
i=1 

s.t. x ~ c .  (LC) 

It follows immediately that  the global minimizer x* of the 
above problem is a Pareto optimal point for (MOP), since 
if not, then there must exist a feasible x which improves on 
at least one of the (positively weighted) objectives without 
increasing the others and hence produces a smaller value of 
the weighted sum.* 

A common approach then is to perform the above mini- 
mization for an even spread of w in order to generate several 
points in the Pareto set (which for a two-objective problem 
produces points on the Pareto curve or tradeoff curve). The 
two major difficulties with this idea are as follows. 

* If the Pareto curve is not convex, there does not exist 
any w for which the solution to problem (LC) lies in the 
nonconvex part. 

* Even if the Pareto curve is convex, an even spread of 
weights w does not produce an even spread of points on 
the Pareto curve. 

The following sections attempt to explain geometrically 
why these happen. 

*a unicity assumption on the global minimizer may be required if 
some of the components of w are zero 

June	4,	2015	 Matt	Landreman
Some optimal solutions to a smooth multi‐objective problem cannot be 

found by minimizing a total  2F  
Definition:	Given	a	vector	of	parameters	 x 	and	target	functions	 � �2

jF x 	(for	 1...j N ),	a	point	in	
parameter	 space	 *x 	 is	 “Pareto	optimal”	 if	 there	 is	no	other	point	 cx 	where	 � � � �2 2

*j jF Fc �x x 	 for	
every	 j .	In	other	words,	a	point	is	Pareto	optimal	if	any	one	of	the	individual	target	functions	can	
only	be	improved	by	sacrificing	at	least	one	of	the	other	target	functions.	
	
Claim:	 For	 certain	 target	 functions,	 and	 for	 a	 given	 Pareto	 optimum	 *x ,	 there	may	 be	 no	 set	 of	
weights	 1... NO O 	 such	 that	 *x 	 minimizes	 � � � � � �2 2 2

1 1 ...tot N NF O F O F � �x x x .	 In	 other	 words,	 no	
matter	how	we	choose	to	weight	the	individual	target	functions	in	 � �2

totF x ,	there	are	some	Pareto	
optima	that	cannot	be	found	by	minimizing	 � �2

totF x .	
	
Proof:	Consider	the	following	example,	with	1	parameter	 x ,	and	two	target	functions:	
	

										 � � > @� �22
1 1 exp 1x xF  � � � ,	

	

										 � � > @� �22
2 1 exp 1x xF  � � � .	

The	set	of	Pareto‐optimal	solutions	is	the	interval	 > @1,  1x� � ,	since	if	 x 	is	in	this	interval	and	we	
take	a	small	step	to	the	left,	we	improve	(lower)	 2

1F 	but	we	worsen	(increase)	 2
2F ,	and	vice‐versa	if	

we	move	to	the	right.	The	range	 ( , 1]x� �f � 	is	not	optimal	since	we	can	reduce	both	 2
1F 	and	 2

2F 	
by	moving	 right.	 The	 range	 [1,  )x� f 	 is	 not	 optimal	 since	 we	 can	 reduce	 both	 2

1F 	 and	 2
2F 	 by	

moving	left.	
Now	let	us	see	how	the	space	of	Pareto	optima	compares	to	the	space	of	possible	optima	of	

a	 2
totF 	for	various	weights	of	the	individual	 2

jF .	It	is	no	loss	of	generality	to	consider	a	single	weight	
> @0,1O � 	and	write	

	 � � � � > @ � �2 2 2
1 21tot x x xF OF O F � � .	 	

Here	is	what	 � �2
tot xF 	looks	like,	for	various	choices	of	the	weight	O ,	with	local	minima	highlighted:	

	
	If	 O 	is	increased	from	0,	one	local	minimum	moves	from	 1x  	to	0.76	and	then	disappears	when	
x 	 exceeds	0.74.	 	A	second	 local	minimum	of	 2

totF 	 appears	at	 x =‐0.76	when	 O 	 exceeds	0.25,	and	
this	minimum	moves	 to	 1x  � 	 when	 1O o .	 Consequently	 the	 range	 of	 optima	we	 can	 find	 by	
minimizing	 2

totF 	 is	 > @ > @1,  0.76   0.76,  1� � * .	 Thus,	 if	we	 seek	optima	by	minimizing	a	 total	 2F ,	
even	if	we	are	allowed	to	vary	the	relative	contributions	from	 2

1F 	and	 2
2F ,	we	never	find	most	of	

the	 Pareto‐optimal	 solution	 space	 > @1,  1� .	 For	 instance,	 we	 can	 never	 find	 the	 optimum	 0x  ,	
which	might	be	a	reasonable	trade‐off	between	the	two	targets.	
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Exploring the Pareto Frontier

x dominates y if

∀k, fk(x) ≤ fk(y)

and not all strict.

Best points are:
Pareto optimal,
aka non-dominated,
aka non-inferior,
aka non-efficient.

Form Pareto frontier

Better

Worse

Pareto frontier

Minimize αf1 + (1− α)f2

f2

f1
Minimizing

∑
k αkfk only explores convex hull!

Other methods sample / approximate the full frontier.
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First-order condition

Stationary condition:

{J(x)u : u ≥ 0} ∩ Rn+ = {0}.

Fritz John stationary condition: for some λ ≥ 0, λ ̸= 0

J(x)Tλ = 0.

Follows via Motzkin’s theorem of the alternative: if A and C are
given matrices, can either solve

Ax < 0, Cx ≤ 0

or
ATλ+ CTµ = 0, λ ≥ 0, λ ̸= 0, µ ≥ 0

But not both.
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Fritz John multiplier geometry

Better

Worse

−λ

f2

f1
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Fritz John vs KKT

Fritz John condition (with constraints): Weak Pareto for

minimize f(x) s.t. c(x) ≤ 0

requires λ ≥ 0 and µ ≥ 0 not both all zero such that

λTf′(∗x) + µTc′(x∗) = 0
µici(x∗) = 0

Very similar to KKT conditions for constrained opt:

∇xL(x∗) = 0, L(x, λ, µ) = ϕ(x) + λTcE(x) + µTcI(x)
ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness
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Constrained vs multi-objective

• First-order conditions are almost the same
• Can mix and match (constrained multi-objective)
• Multi-objective involves many solves to explore space
• Curse of dimensionality: exploration cost scales
exponentially with m
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Scalarizing

Find Pareto points via a single-objective optimization problem:

• Linear: ϕ(x) = wTf(x)
• Need to consider stationary points to get full frontier.
• Uniform weight sampling ̸= uniform frontier sampling.

• Projection: ϕ(x) =
∑

i wi(fi(x)− f∗i )
2

• Effectively what is done now.
• Similar tradeoffs to linear scalarization.

• Chebyshev: ϕ(x) = maxi wifi(x)
• Nonsmooth where max is non-unique.
• Uniform weight ̸= uniform frontier sampling.

• ϵ-constraint: ϕ(x) = fi(x), fj(x) ≤ ϵj for j ̸= i
• Subproblem is constrained.
• Can get uniform sampling in components other than i
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Example: Quasi-symmetry

Landreman-Paul QA and QH configurations,
optimized with target aspect ratio 6 and 8.

Q: tradeoff between quasisymmetry and aspect ratio?
(Padidar, Landreman, Bindel)
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Pareto frontier (QH with 4 field periods)

52



Aspect ratio 3.3
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Aspect ratio 3.3
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Aspect ratio 5
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Aspect ratio 5
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Aspect ratio 8.67
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Aspect ratio 8.67

58



Continuation

Algorithm in this case: continuation in A

• Start at one Pareto point (A(x),Q(x))
• Write stationarity conditions via

∇Q(x) + λ∇A(x) = 0
λ(A(x)− A∗) = 0

A(x) ≤ A∗

• Differentiate vs A∗ to get tangent direction[
∇2Q(x) + λ∇2A(x) ∇A(x)

∇A(x)T 0

][
x′

λ′

]
=

[
0
1

]
• Predictor moves a little in tangent direction
• Correct prediction via local solver (e.g. Newton)
• Can re-use Hessians, etc for more efficiency
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Which parameterization?

What if Pareto frontier goes vertical?

• Can switch to using Q as continuation parameter
• Or use a pseudo-arclength parameter
• Generalizations to more than two functions are available
(e.g. normal boundary intersection)
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And more!

Feel free to ask about

• The latest with GPs with derivatives (Xinran)
• Optimization with stability constraints (Max)
• Fast computations of flux surfaces (Max)
• Alpha particle transport (Misha)
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