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Lawson criterion

Figure of merit: nTrr where

- nis number density
- Tis temperature

- 7¢ 1S energy confinement time

Min value required at T = 14 keV (about 162 x 10° K) is

nTre > 3.5 x 108 Ks/m’



Magnetic confinement basics
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The big name: Tokamaks

Inner poloidal field coils
(primary transformer circuit)

Poloidal magnetic field Outer poloidal field coils
- (for plasma positioning and shaping)

Toroidal field coils

Resulting helical magnetic field
Toroidal magnetic field

Plasma electric current
(secondary transformer circuit)


https://dx.doi.org/10.1155/2014/940965




Trouble with Tokamaks

- Toroidal and poloidal coils produce a helical B
- Also a strong current (which affects the field)

- Prone to disruption (a bad instability)
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Stellarator Concept

Magnetic surfaces & plasma
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Wendelstein 7-X Machine

Operating since 2015-12-10;
plasma discharges lasting several min.
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Trouble with Stellarators

- Stability is not such an issue

- More “neo-classical” (low-collisionality) transport — bad
for confinement

- Control neo-classical transport by quasisymmetry (|B| has
a symmetry in Boozer coordinates)

13



Stellarator Quality Measures

What makes an “optimal” stellarator?

- Approximates field symmetries (which measures?)

- Satisfies macroscopic and local stability

- Divertor fields for particle and heat exhaust

- Minimizes collisional and energetic particle transport
- Minimizes turbulent transport

- Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations,
uncertainties, and computational costs.
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What Makes a Good Stellarator?
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Half-Module Winding Surface,
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Plasma Boundary
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Inside Objects used in Optimization

Field Error + Geometric Properties

CJ
Q Properties of the Vacuum Field

Figure courtesy Jim Lobsien Optimization of Fourier Coefficients

Quality Criteria
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How Do We Optimize? (STELLOPT Approach)

Optimizer . . .
?<_ (physics + engineering targets)
7

Adjust plasma boundary Solve 3D
(or coil shape) equilibrium
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Challenges

1. Costly and “black box” physics computations

- Each step: MHD equilibrium solve, transport, coil design, ...
- Several times per step for finite-difference gradients

2. Managing tradeoffs

- How do we choose the weights in the x> measure? By gut?
- Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
- What you simulate # what you build!
4. Global search
- How to avoid getting stuck in local minima?



Progress of the Simons collaboration

- Collaboration has made a lot of progress (though work
remains) on

- Fast equilibrium solvers (NYU, Arizona, Flatiron)

- Faster simulations, with derivatives (NYU, Maryland,
Princeton)

- Optimizing under uncertainty (Greifswald, Cornell)

- Producing plasmas with high quasisymmetry (Maryland,
Princeton)

- More limited progress on

- Global search (though some with TuRBO)

- Fast and accurate proxies for turbulent transport
- Optimizing with instabilities (micro/macro)

- Optimization of divertors



Cornell work

Rest of the session on two Cornell-centered projects:

- Optimization under uncertainty

- Multi-objective optimization
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Optimization Under Uncertainty

Low construction tolerances:
+ NCSX: 0.08%
- Wendelstein 7-X: 0.1% - 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to

- Changes to control parameters
- Uncertainty in physics or model
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Risk-neutral OUU
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Want efficient OUU in ~ 200 dimensions

min Ey[f(x — U)]
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(Recent) Prior: Monte Carlo Approach
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Robustness & mean perf greatly improved (w/ ~ 108 evals)
J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen,
Improved performance of stellarator coil design optimization,
Journal of Plasma Physics, 2020. 22



Our Approach: fast TURBO-ADAM

o

Black: ref; red: TURBO-ADAM 10mm; blue: TuURBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

- Global search with modified TURBO
- Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget. -



Big Picture

Interpolation / regression / supervised learning:

- Choose an approximation family F
- Global bases (Fourier, polynomial, etc)
- Local bases (e.g. piecewise polynomials)
- Gaussian processes or splines
- Neural networks
- etc
- Choose s € F to agree with data about f
- May need regularization / priors
- May acquire data adaptively

- Usesin lieu of f
Error bounds: Consistency (how close fis to F) + stability

2%



Curse of Dimensionality

Suppose f: Q ¢ RY — R has m derivatives. Worst-case
approximation error over Q scales with measurements n like

If = fllso ~ diam(Q)n="/9,

Optimal rate for global opt differs by a constant.
(Local optimization is a different problem.)

Sample efficiency requires:

- Lots of smoothness (large m)
- Low-dimensional structure (small “effective” d)

- Or some other structure (sometimes w/o justification)

Usually do have more structure...
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Gaussian Processes (GPs)
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Being Bayesian
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Matéern and SE kernels
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Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",Ce RM™"
RY = R:  GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:
VX = (X1,...,X), Xj € RY,
have fx ~ N(ux, Kxx), where
fx e R, (fx)i = f(x)
px € R, (ux)i = p(x;)
Kxx € R™M (Kxx)ij = R(Xi, X;)

When X is unambiguous, we will sometimes just write K.
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Being Bayesian

Now consider prior of f ~ GP(u, k), noisy measurements
fx~y+e e~NO,W, typically W = o2
Posterior is f ~ GP(y/, k") with

ul(X) = M(X) + KyxC K= Kyx + W
k/(X, X/) = KXX/ - KXXR_1KXX/ €= R_1 (y - /J/X)

The expensive bit: solves with K.
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Bayesian Optimization (BO)

Typical GP-based BO:

- Evaluate f on initial sample in Q

- Condition a GP on sample data
- Until budget exhausted
- Optimize acquistion function a(x) over Q
(e.g. api(X) = E[[f(Xpest) — f(X)]+] Where Xpest iS best so far)

- Evaluate at selected point
- Update the GP model (including hyper-parameters)

- Standard cost: O(n®) per step (with n data points)

Great for modest budgets — but no escape from the Curse!
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Multi-Start

To avoid the Curse, we need an assumption!

So: suppose d large, but not too many minimizers:

- Choose M starting points scattered over Q
- Run local minimizer (gradient descent, Newton, etc)

- Hope for at least one start per convergence basin

Q: How to allocate effort to different starts?

32



TuRBO: Trust-Region BO

For high-d: combine local BO with multi-start strategy

- Rough global sampling at M points
- Local GP models and trust-region around each point

- Thompson sampling to choose which local model (and
trust region) to refine next

(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)
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TuRBO + OUU
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- TURBO builds GP models for f(x) (nominal objective)

- Simple transform from GP for f(x) to GP for Ey[f(x + U)]
(Beland and Nair, 2017)

Problem: TuRBO explores a lot — want more refinement
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Stochastic Gradient Descent (SGD)

Ordinary gradient descent is

Xeg1 = Xg — aVP(Xk)
SGD is
Xp41 = Xp — ARGk
where gg is a random draw, E[gk] = V(x).

For ¢(x) = Ey[f(x + U)], use gr = V(X + Up).

Convergence is slow (O(1/m)), but steps can be cheap.
Speed depends a lot on variance of gradient estimator.
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Adam + Control Variates

- Regular Adam: stochastic gradient algorithm with
“adaptive momentum” for step size control. Use directions

g9(x) = Vf(x+U)

for a random draw U (can also do mini-batch).

- Variance reduction with control variates (Wang, Chen,
Smola, Xing, 2013)

g(x) = VAlx+ U) + a(3(x) — E[G(X)])
g(x) = Vf(x) + HU.

- True Hessian not avail, so set H to be an approximate
Hessian (BFGS approximation via gradients from Adam).
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Additional Information

Multi-output GPs model f: Q ¢ R — RF

- Model covariance over space and across outputs.

- Example: function values + derivatives

R(X,X)  (Vek(x,x))
ViR(X,X')  V2R(x,x')

1(X)

S RV (x,x') =

pY (x) =

- Can also model multi-fidelity sims, etc

Pro: FOCUS provides gradients, easy to incorporate!
Con: Matrix dimensions scale like n(d + 1)
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Latest and Greatest

Idea: variational approximate inference with derivatives

- Assume posterior of a given functional form
- Minimize evidence lower bound (ELBO) via Adam
- Demo with half a million FOCUS runs (n = 500K, d = 45)

(Bindel, Gardner, Huang, Padidar, Zhu, NeurlPS 2021)
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Constrained and Multi-Objective

Naive: put everything we care about in a nonlinear LS problem

- fr(x) is deviation from kth target
- Add some weighting (chosen by the user)

But is this actually what we want?

- Choice of target values is unclear
- Choice of weights is unclear

And there are reasons for numerical nervousness:

- Maybe too few objectives (underdetermined LS problems)
- Maybe poorly conditioned (esp. with “large” weights)
- May not have small residual
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Tackling Constraints

General problem

G(x)=0, je&

minimize ¢(x) s.t. _
G(x)<0, jeI

Convert into unconstrained optimization / nonlinear equation
solving problem with:

- Fewer degrees of freedom (constraint elimination)
- Same degrees of freedom (penalties and barriers)

- More degrees of freedom (Lagrange multipliers)

Constraint elimination usually only for linear constraints.
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KKT Conditions

o ¢(x)=0, je€&
minimize ¢(x) s.t. i) j
G(x) <0, jeZ

Define the Lagrangian

L% A, 1) = 6(X) + ) NG(¥) + ) mici(x)

€€ €T
KKT conditions are
ViL(x*) =0
¢(x*)=0, i€é& equality constraints
¢(x*)<0, ieZ inequality constraints

>0, 1€l non-negativity of multipliers

Ci(x")pj=0, 1€Z complementary slackness
41



Penalties and Barriers

Want to minimize
¢(x)=0, je&
minimize ¢(x) st. i) j
¢(x)<0, jeZ
Instead minimize for small v
1
6y () = 600 + 5= D 6002 =7 Y log(—¢i(x))
v €€ €T
Note that at minimizer x*:

Vb (X*) = V(x*) + Y AVe(x) + ) Ave(x*

€& €T
where Lagrange multiplier estimates come from the ¢;:

X =ci(x)/y, = v/c(x*)

Standard trick: Penalty to estimate multipliers.
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Managing Tradeoffs

What about using nonlinear least squares for tradeoffs?

More generally, consider f: R" — R™, maybe minimize

W) = Wifi(x).
k=1

43



Incompleteness of y-square Combination

Structural Optimization 14, 63-69 © Springer-Verlag 1997

A closer look at drawbacks of minimizing weighted sums of
objectives for Pareto set generation in multicriteria optimization

problems

1. Das and J.E. Dennis
Department of Computational and Applied Mathematics, Rice University of Houston, TX 77251-1892, USA

June 4, 2015 Matt Landreman
Some optimal solutions to a smooth multi-objective problem cannot be
found by minimizing a total
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Exploring the Pareto Frontier

x dominates y if Minimize af; + (1 — a)f2
1 (/
VR () < ful) AN Worse
and not all strict. 07
Best points are: fo o .
Pareto optimal, “! Pareto frontier =—

aka non-dominated,
aka non-inferior,
aka non-efficient.

; Better

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Form Pareto frontier f1

Minimizing >, cyfr, only explores convex hull!
Other methods sample / approximate the full frontier.
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First-order condition

Stationary condition:
{u:u>0}nR} = {0}.
Fritz John stationary condition: for some A > 0,A # 0
JO)TA = 0.

Follows via Motzkin's theorem of the alternative: if A and C are
given matrices, can either solve

Ax <0, (x<ZO0

or
AIX+CTu=0, A>0X#0,u>0
But not both.
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Fritz John multiplier geometry

1

Worse
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fi
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Fritz John vs KKT

Fritz John condition (with constraints): Weak Pareto for
minimize f(x) s.t. ¢(x) <0
requires A > 0 and p > 0 not both all zero such that

NP (%) + p'c'(x*) =0

pici(x*) =0
Very similar to KKT conditions for constrained opt:

ViL(x*) = 0, L(X, A\, 1) = o(x) + N ce(x) + pcz(x)
¢(x)=0, i€€& equality constraints
(x)<0, ez inequality constraints

wi >0, Iiel non-negativity of multipliers

(X )uj=0, i€l complementary slackness
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Constrained vs multi-objective

- First-order conditions are almost the same
- Can mix and match (constrained multi-objective)
- Multi-objective involves many solves to explore space

- Curse of dimensionality: exploration cost scales
exponentially with m
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Find Pareto points via a single-objective optimization problem:

- Linear: ¢(x) = w'f(x)
- Need to consider stationary points to get full frontier.
- Uniform weight sampling # uniform frontier sampling.
* Projection: ¢(x) = > wi(fi(x) — fF)?
- Effectively what is done now.
- Similar tradeoffs to linear scalarization.
- Chebyshev: ¢(x) = max; w;fj(x)
- Nonsmooth where max is non-unique.
- Uniform weight # uniform frontier sampling.
* e-constraint: ¢(x) = fi(x), fj(x) < ¢ forj#i
- Subproblem is constrained.
- Can get uniform sampling in components other than i
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Example: Quasi-symmetry

\ [} 2.036
| [+ 1.024
1012
1.000
0.988
0.976
0.964

1.125
1.095
1.065
1.035
1.005
0.975
N [T 0.945
0.915
0.885

Landreman-Paul QA and QH configurations,
optimized with target aspect ratio 6 and 8.

Q: tradeoff between quasisymmetry and aspect ratio?
(Padidar, Landreman, Bindel)
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Aspect ratio 3.3
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Aspect ratio 3.3
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Aspect ratio 5
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Aspect ratio 5
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Aspect ratio 8.67
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Aspect ratio 8.67
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Algorithm in this case: continuation in A

- Start at one Pareto point (A(x), Q(x))
- Write stationarity conditions via

VQ(x) + A\VA(x) =0
AMA(X) —A")=0
A(x) < A*
- Differentiate vs A* to get tangent direction
V2Q(X) + AV2A(X)  VA(x) [x/] B H
N 1

VA(X)" 0
- Predictor moves a little in tangent direction
- Correct prediction via local solver (e.g. Newton)
- Can re-use Hessians, etc for more efficiency
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Which parameterization?

What if Pareto frontier goes vertical?

- Can switch to using Q as continuation parameter
- Or use a pseudo-arclength parameter

- Generalizations to more than two functions are available
(e.g. normal boundary intersection)
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Feel free to ask about

- The latest with GPs with derivatives (Xinran)
- Optimization with stability constraints (Max)
- Fast computations of flux surfaces (Max)

- Alpha particle transport (Misha)
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