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Function Approximation from Scattered Data

Goal: Approximate f : Ω→R from fX =
[
f(x1) . . . f(xn)

]T .
Approach: Choose s(x) = ∑

n
i=1 k (x,xi)ci with kernel k : Ω×Ω→R.

(often k (x,y) = φ (‖x−y‖) for some radial basis function φ )

To fit: solve (KXX + λ I)c = fX where (KXX)ij = k (xi,xj).
I Computational issue: KXX is dense and ill-conditioned.
I Theoretical issue: How to choose kernel?

Kernel Regression Stories

Feature map Data-dependent basis

Energy minimization Gaussian process

=

≈

=

≈

Minimize
λ‖s‖2H +‖sX− fX‖2

where s(x) = 〈d,ψ(x)〉H for some feature map ψ : Ω→H .
Gives d = ∑

n
j=1 cjψ(xj), kernel is k (x,y) = 〈ψ(x),ψ(y)〉H .

Can reconstruct features if needed from eigenpairs of

K u =
∫

Ω
k (x,y)u(y)dΩ(y).

Or treat as regularized regression with a data-dependent basis
determined by sample locations (overcomes Mairhuber-Curtis).

Or Gaussian process: Gaussian random variables indexed by Ω,
kernel gives covariance, regression gives posterior mean.

Matérn and SE kernels
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Low-Rank Approximation of Kernels

Smooth kernels =⇒ eigenvalues of KXX decay fast.
Approximate KXX = UUT , regression ≡ regularized LS with U:

(UTU + λ I)d = UT fX , c = λ
−1(fX−Ud).

Useful idea: approximate kernel function, not kernel matrix.
(Or devise an approximate feature map, like rows of U.)

Examples:
I Use inducing points: k (x,y) = kxZK−1

ZZ kZy
I Leading eigenpairs of associated integral operator K (Mercer)
I Random Fourier features: k (x,y) = Eω[exp(ιωTx)exp(ιωTy)∗],

ω ∼ Fourier transform of (scaled) kernel. Then MC quadrature.

For each: reduced approximation space U ⊂H and inner product
on U depend on kernel.

Approximation by Chebyshev Features

Alternate idea: Use a kernel-independent U ⊂H – but kernel
determines the inner product.

Concrete 1D case: k (x,y) = φ (x−y) = T(x)TMT(y), where
I T(x) =

[
T0(x) T1(x) . . .

]T (Chebyshev features)
I M determined from k

Truncated expansion gives polynomial s(x) = T(x)d with
(TT

X TX + λM−1)d = TT
X fX .

Constructing the Inner Product

Goal: φ (x−y) = T(x)TMT(y).

Approach: Compute Dk : `2→ `2 s.t. Tk((x−y)/2) = T(x)TDkT(y).
Then

φ (x−y) =
∞

∑
k=0

αkTk((x−y)/2)

= T(x)

(
∞

∑
k=0

αkDk

)
T(y).

Rewrite recurrence on Tk(x) as operator on T(x) vector:

xTk(x) =
1
2

{
Tk+1(x) + Tk−1(x), k > 0
2T1(x), k = 0

xT(x) =
1
2

ST(x),S ≡ tridiag

(
2 1 1 . . .

0 0 0 0 . . .
1 1 1 . . .

)
Then Tk+1(z) = 2zTk(z)−Tk−1(z) for z = (x−y)/2 yields

Tk+1((x−y)/2) = T(x)

(
1
2

STDk −
1
2

DkS−Dk−1

)
T(y)

=⇒ Dk+1 =
1
2

STDk −
1
2

DkS−Dk−1

with starting values

D0(0 : 0,0 : 0) = 1, D1(0 : 1,0 : 1) =
1
2

[
0 1
−1 0

]

Splitting the Kernel

Common case: not low rank, lacks regularity near zero. Write
φ (r)≈ φsmooth(r) + φcpt(r)

where
I φsmooth(r) is an even polynomial (treat as above)
I φcpt(r) is supported only near origin

Resulting kernel matrix looks like
KXX ≈ TXMTX + B,

where first term is low rank (as above), second term is sparse.
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