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Approximation by Chebyshev Features

Function Approximation from Scattered Data

Goal: Approximate f: Q — R from fy = [f(x1) ... f(Xn)| " Alternate idea: Use a kernel-independent % C ¢ — but kernel
Approach: Choose s(x) =Y  k(x, x;)c; with kernel k : Q x Q — RR. determines the inner product.
(often k(x,y) = o(||x — y||) for some radial basis function ¢)

Concrete 1D case: k(x,y) = o(x —y) = T(x)"MT(y), where
T
.}

To fit: solve (Kxx + Al)c = fx where (Kxx); = K(Xi, ;). > T(x) = [To(x) T1(x) ...] " (Chebyshev features)
» Computational issue: Kxx Is dense and ill-conditioned. » M determined from k
» Theoretical issue: How to choose kernel?

Truncated expansion gives polynomial s(x) = T(x)d with

Ty Tx+AM )d = Tyfx.
Kernel Regression Stories (Tx Tx ) X'X

Feature map Data-dependent basis
) Constructing the Inner Product
______ gl g Goal ¢( X — y) _ T( X)T MT( y)_
| | Approach: Compute Dy : 2 — 2 s.t. Te((x — y)/2) = T(x) "D T(y).
Then
Energy minimization Gaussian process O(x—y)=) ouTk((x—Y)/2)
= T(x) (Z ocka) T(y)
k=0

O Rewrite recurrence on T, (x) as operator on T(x) vector:

Te(x) = 1 {Tk+1(x)+Tk1(X)a K>0

Minimize 2 | 2T4(x), k=0
AllslZe + llsx — x| : 211
where s(x) = (d, y(x))_» for some feature map v : Q — 7. XT(x)= EST(X)’ S = tridiag 0101010

Gives d =Y, cjy(X)), kernel is k(x,y) = (y(x), w(y)).~-

Then T, =2ZT — Ty f = (x—vVy)/2 viel
Can reconstruct features if needed from eigenpairs of en Ty.1(z) =2zT(2) — Tk-1(2) for z = (x — y) /2 yields

1 .1 1
KU = /Qk(xjy)u(y) dQ(y) Tk—|—1((X_y)/2) — T(X) (ES Dk - EDKS — Dk—1> T(y)
1 .1 1
Or treat as regularized regression with a data-dependent basis = Di1 =55 Dic=5DkS — Dic—1
determined by sample locations (overcomes Mairhuber-Curtis). with starting values
110 1
Or Gaussian process: Gaussian random variables indexed by Q, Dp(0:0,0:0)=1, D¢(0:1,0:1)= 5110

kernel gives covariance, regression gives posterior mean.

Matern and SE kernels
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Smooth kernels — eigenvalues of Kxx decay fast.
Approximate Kyx = UU', regression = regularized LS with U: = . 0 . >

T T a2 —1(f
(UU+Ald=U"1x, c=4"(ix—Ud). Common case: not low rank, lacks regularity near zero. Write
Useful idea: approximate kernel function, not kernel matrix. O (r) = Gemooth(r) + Pept ()
™~ ¥smoo Cp

(Or devise an approximate feature map, like rows of U.)

where
> Osmooth( ) 1S @n even polynomial (treat as above)
> d.pi(r) IS supported only near origin

Examples:
» Use inducing points: k(x,y) = kyzK5, kz,
» |_eading eigenpairs of associated integral operator .z (Mercer)

» Random Fourier features: k(x,y) = Eylexp(io” x)exp(10'y)*], Resulting kernel matrix looks like
o ~ Fourier transform of (scaled) kernel. Then MC quadrature. Kyx ~ TxMTy + B.
For each: reduced approximation space % C .7 and inner product where first term is low rank (as above), second term is sparse.

on % depend on kernel.
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