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Challenges (2019 edition)

1. Costly and “black box” physics computations
• Each step: MHD equilibrium solve, transport, coil design, ...
• Several times per step for finite-difference gradients

2. Managing tradeoffs
• How do we choose the weights in the χ2 measure? By gut?
• Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
• What you simulate ̸= what you build!

4. Global search
• How to avoid getting stuck in local minima?
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Progress

• Collaboration has made a lot of progress on
• Faster simulations, with derivatives
• Optimizing under uncertainty

• Limited progress on global search (TuRBO)
• Still less on tradeoffs and constraints
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Background: Unconstrained Optimization

Assume ϕ : Rn → R is C2, seek

minimize ϕ(x) over x ∈ Rn

Standard (local) strategy from an adequate guess x0:

• Approximate ϕ near xk by a model (usu. quadratic)
• Minimize the model to find xk+1 (linear algebra)
• Avoid over-stepping by line search, trust region, etc
(globalization)

Lots of room for cleverness, using problem structure.
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Newton Framework

Quadratic model:

ϕ(xk + u) ≈ ϕ(xk) +∇ϕ(xk)Tu+
1
2u

THϕ(xk)u

Model gradient: ∇ϕ(xk) + Hϕ(xk)u.
Minimized at u = −Hϕ(xk)−1∇ϕ(xk) (if H pos def).

Lots of standard methods fudge H in some way:

• For convergence (e.g. trust region)
• For cost and convenience (e.g. BFGS)

Quadratic convergence =⇒ asymptotically get Newton steps.
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Nonlinear Least Squares

ϕ(x) = 1
2∥f(x)∥

2 where f : Rn → Rm; ∇ϕ(x) = J(x)Tf(x), J(x) = f′(x)

Gauss-Newton idea:

minimize ∥f(xk) + J(xk)pk∥2

and set xk+1 = xk + αkpk. Modified Newton with

Hϕ(x) = J(x)TJ(x) +
m∑
k=1

fk(x)Hϕk(x) ≈ J(x)TJ(x).

Levenberg-Marquardt: regularize Gauss-Newton

minimize ∥f(xk) + J(xk)pk∥2 + λ2k∥Dkx
k∥2

where often Dk = I (Levenberg) or D2k = diag JTJ (Marquardt).
Hessian ≈ J(xk)TJ(xk) + λ2kD
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Nonlinear LS Convergence

Gauss-Newton and Levenberg-Marquardt:

• Quadratic convergence when f(x∗) = 0, otherwise linear
• Linear rate depends on conditioning of κ(J), ∥J′∥, ∥f(x∗)∥,
and regularization or step size
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A Common Approach

Put everything we care about in a nonlinear LS problem

• fk(x) is deviation from kth target
• Add some weighting (chosen by the user)

But is this actually what we want?

• Choice of target values is unclear
• Choice of weights is unclear

And there are reasons for numerical nervousness:

• Maybe too few objectives (underdetermined LS problems)
• Maybe poorly conditioned (esp. with “large” weights)
• May not have small residual
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Tackling Constraints

General problem

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Convert into unconstrained optimization / nonlinear equation
solving problem with:

• Fewer degrees of freedom (constraint elimination)
• Same degrees of freedom (penalties and barriers)
• More degrees of freedom (Lagrange multipliers)

Constraint elimination usually only for linear constraints.
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KKT Conditions

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Define the Lagrangian

L(x, λ, µ) = ϕ(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

KKT conditions are

∇xL(x∗) = 0
ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness
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Penalties and Barriers

Want to minimize

minimize ϕ(x) s.t.

cj(x) = 0, j ∈ E

cj(x) ≤ 0, j ∈ I

Instead minimize for small γ

ψγ(x) = ϕ(x) + 1
2γ

∑
i∈E

ci(x)2 − γ
∑
i∈I

log(−ci(x)).

Note that at minimizer x∗:

∇ψγ(x∗) = ∇ϕ(x∗) +
∑
i∈E

λ̃i∇ci(x∗) +
∑
i∈I

µ̃i∇ci(x∗)

where Lagrange multiplier estimates come from the ci:

λ̃i = ci(x∗)/γ, µ̃i = γ/ci(x∗)

Standard trick: Penalty to estimate multipliers.
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Managing Tradeoffs

What about using nonlinear least squares for tradeoffs?

More generally, consider f : Rn → Rm, maybe minimize

wTf(x) =
m∑
k=1

wkfk(x).
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Incompleteness of χ-square Combination

Structural Optimization 14, 63-69 @ Springer-Verlag 1997 

A closer look at drawbacks of minimizing weighted sums of 
object ives  for Pareto  set generation in multicriteria opt imizat ion 
problems 

I. D a s  a n d  J .E .  D e n n i s  

Department of Computational and Applied Mathematics, Rice University of Houston, TX 77251-1892, USA 

A b s t r a c t  A standard technique for generating the Pareto set 
in multicriteria optimization problems is to minimize (convex) 
weighted sums of the different objectives for various different set- 
tings of the weights. However, it is well-known that this method 
succeeds in getting points from all parts of the Pareto set only 
when the Pareto curve is convex. This article provides a geomet- 
rical argument as to why this is the case. 

Secondly, it is a frequent observation that even for convex 
Pareto curves, an evenly distributed set of weights falls to produce 
an even distribution of points from a]l parts of the Pareto set. This 
article aims to identify the mechanism behind this observation. 
Roughly, the weight is related to the slope of the Pareto curve in 
the objective space in a way such that an even spread of Pareto 
points actually corresponds to often very uneven distributions of 
weights. Several examples are provided showing assumed shapes 
of Pareto curves and the distribution of weights corresponding to 
an even spread of points on those Pareto curves. 

rain F ( x )  = 
x c C  

where 

1 I n t r o d u c t i o n  

Many problems in a wide variety of engineering disciplines 
are characterized by the need to minimize several nonlinear 
functions of the variables simultaneously. For example, a typ- 
ical bridge-construction design might involve simultaneously 
minimizing the total mass of the structure and maximizing 
its stiffness. An airplane design problem might require max- 
imizing fuel efficiency, payload, and minimizing the weight 
of the structure. Such multicriteria problems can be mathe- 
matically expressed as 

/1(~) 
h(~) 

n > 2 (MOP) 

/n(x)  

C = { x : h ( x ) = 0 ,  g(x) < 0 ,  a < x K b } ,  

F : H~ N ~-+ ~ n  , h : ~ N  ~_+ H~nean d g : lt~N ~_+ ~ n i  

are twice continuously differentiable mappings and a G (JT~ U 
{-co})  N, b C (~U{oo})  N, g being the number of variables, 
n the number of objectives, ne and ni the number of equality 
and inequality constraints. 

Since no single x* would in general minimize every f i  
simultaneously, a concept of optimality which is useful in the 
multiobjective framework is that of Pareto optimality. To 

acquaint readers not familiar with the concept, it is defined 
below. 

Definition. A point x* C C is said to be (globally) Pareto 
optimal or a (globally) efficient point or a nondominated or 
a noninferior point for (MOP) if and only if there does not 
exist x E C such that F(x)  _< F ( x * )  with at least one strict 
inequality (the _< implies term-by-term inequality). 

A very popular approach for converting this multicriteria 
problem into a scalar optimization problem is to minimize a 
convex combination of the different objectives (see e.g. Koski 
1988; Jahn c t a l .  1991). In other words, n weights w i are 
chosen such that w i > 0, i = 1 , . . . ,  n and ~ n = l  w i = 1 and 
the following problem is solved: 

n 

min ~ w i f i ( x  ) = wT F ( x )  , 
i=1 

s.t. x ~ c .  (LC) 

It follows immediately that  the global minimizer x* of the 
above problem is a Pareto optimal point for (MOP), since 
if not, then there must exist a feasible x which improves on 
at least one of the (positively weighted) objectives without 
increasing the others and hence produces a smaller value of 
the weighted sum.* 

A common approach then is to perform the above mini- 
mization for an even spread of w in order to generate several 
points in the Pareto set (which for a two-objective problem 
produces points on the Pareto curve or tradeoff curve). The 
two major difficulties with this idea are as follows. 

* If the Pareto curve is not convex, there does not exist 
any w for which the solution to problem (LC) lies in the 
nonconvex part. 

* Even if the Pareto curve is convex, an even spread of 
weights w does not produce an even spread of points on 
the Pareto curve. 

The following sections attempt to explain geometrically 
why these happen. 

*a unicity assumption on the global minimizer may be required if 
some of the components of w are zero 

June	4,	2015	 Matt	Landreman
Some optimal solutions to a smooth multi‐objective problem cannot be 

found by minimizing a total  2F  
Definition:	Given	a	vector	of	parameters	 x 	and	target	functions	 � �2

jF x 	(for	 1...j N ),	a	point	in	
parameter	 space	 *x 	 is	 “Pareto	optimal”	 if	 there	 is	no	other	point	 cx 	where	 � � � �2 2

*j jF Fc �x x 	 for	
every	 j .	In	other	words,	a	point	is	Pareto	optimal	if	any	one	of	the	individual	target	functions	can	
only	be	improved	by	sacrificing	at	least	one	of	the	other	target	functions.	
	
Claim:	 For	 certain	 target	 functions,	 and	 for	 a	 given	 Pareto	 optimum	 *x ,	 there	may	 be	 no	 set	 of	
weights	 1... NO O 	 such	 that	 *x 	 minimizes	 � � � � � �2 2 2

1 1 ...tot N NF O F O F � �x x x .	 In	 other	 words,	 no	
matter	how	we	choose	to	weight	the	individual	target	functions	in	 � �2

totF x ,	there	are	some	Pareto	
optima	that	cannot	be	found	by	minimizing	 � �2

totF x .	
	
Proof:	Consider	the	following	example,	with	1	parameter	 x ,	and	two	target	functions:	
	

										 � � > @� �22
1 1 exp 1x xF  � � � ,	

	

										 � � > @� �22
2 1 exp 1x xF  � � � .	

The	set	of	Pareto‐optimal	solutions	is	the	interval	 > @1,  1x� � ,	since	if	 x 	is	in	this	interval	and	we	
take	a	small	step	to	the	left,	we	improve	(lower)	 2

1F 	but	we	worsen	(increase)	 2
2F ,	and	vice‐versa	if	

we	move	to	the	right.	The	range	 ( , 1]x� �f � 	is	not	optimal	since	we	can	reduce	both	 2
1F 	and	 2

2F 	
by	moving	 right.	 The	 range	 [1,  )x� f 	 is	 not	 optimal	 since	 we	 can	 reduce	 both	 2

1F 	 and	 2
2F 	 by	

moving	left.	
Now	let	us	see	how	the	space	of	Pareto	optima	compares	to	the	space	of	possible	optima	of	

a	 2
totF 	for	various	weights	of	the	individual	 2

jF .	It	is	no	loss	of	generality	to	consider	a	single	weight	
> @0,1O � 	and	write	

	 � � � � > @ � �2 2 2
1 21tot x x xF OF O F � � .	 	

Here	is	what	 � �2
tot xF 	looks	like,	for	various	choices	of	the	weight	O ,	with	local	minima	highlighted:	

	
	If	 O 	is	increased	from	0,	one	local	minimum	moves	from	 1x  	to	0.76	and	then	disappears	when	
x 	 exceeds	0.74.	 	A	second	 local	minimum	of	 2

totF 	 appears	at	 x =‐0.76	when	 O 	 exceeds	0.25,	and	
this	minimum	moves	 to	 1x  � 	 when	 1O o .	 Consequently	 the	 range	 of	 optima	we	 can	 find	 by	
minimizing	 2

totF 	 is	 > @ > @1,  0.76   0.76,  1� � * .	 Thus,	 if	we	 seek	optima	by	minimizing	a	 total	 2F ,	
even	if	we	are	allowed	to	vary	the	relative	contributions	from	 2

1F 	and	 2
2F ,	we	never	find	most	of	

the	 Pareto‐optimal	 solution	 space	 > @1,  1� .	 For	 instance,	 we	 can	 never	 find	 the	 optimum	 0x  ,	
which	might	be	a	reasonable	trade‐off	between	the	two	targets.	
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Exploring the Pareto Frontier

x dominates y if

∀k, fk(x) ≤ fk(y)

and not all strict.

Best points are:
Pareto optimal,
aka non-dominated,
aka non-inferior,
aka non-efficient.

Form Pareto frontier

Better

Worse

Pareto frontier

Minimize αf1 + (1− α)f2

f2

f1
Minimizing

∑
k αkfk only explores convex hull!

Other methods sample / approximate the full frontier.
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First-order condition

Stationary condition:

{J(x)u : u ≥ 0} ∩ Rn+ = {0}.

Fritz John stationary condition: for some λ ≥ 0, λ ̸= 0

J(x)Tλ = 0.

Follows via Motzkin’s theorem of the alternative: if A and C are
given matrices, can either solve

Ax < 0, Cx ≤ 0

or
ATλ+ CTµ = 0, λ ≥ 0, λ ̸= 0, µ ≥ 0

But not both.
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Fritz John multiplier geometry

Better

Worse

−λ

f2

f1
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Fritz John vs KKT

Fritz John condition (with constraints): Weak Pareto for

minimize f(x) s.t. c(x) ≤ 0

requires λ ≥ 0 and µ ≥ 0 not both all zero such that

λTf′(∗x) + µTc′(x∗) = 0
µici(x∗) = 0

Very similar to KKT conditions for constrained opt:

∇xL(x∗) = 0, L(x, λ, µ) = ϕ(x) + λTcE(x) + µTcI(x)
ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness
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Constrained vs multi-objective

• First-order conditions are almost the same
• Can mix and match (constrained multi-objective)
• Multi-objective involves many solves to explore space
• Curse of dimensionality: exploration cost scales
exponentially with m
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Scalarizing

Find Pareto points via a single-objective optimization problem:

• Linear: ϕ(x) = wTf(x)
• Need to consider stationary points to get full frontier.
• Uniform weight sampling ̸= uniform frontier sampling.

• Projection: ϕ(x) =
∑

i wi(fi(x)− f∗i )
2

• Effectively what is done now.
• Similar tradeoffs to linear scalarization.

• Chebyshev: ϕ(x) = maxi wifi(x)
• Nonsmooth where max is non-unique.
• Uniform weight ̸= uniform frontier sampling.

• ϵ-constraint: ϕ(x) = fi(x), fj(x) ≤ ϵj for j ̸= i
• Subproblem is constrained.
• Can get uniform sampling in components other than i
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Example: Quasi-symmetry

Landreman-Paul QA and QH configurations,
optimized with target aspect ratio 6 and 8.

Q: tradeoff between quasisymmetry and aspect ratio?
(Padidar, Landreman, Bindel)
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Pareto frontier (QH with 4 field periods)
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Aspect ratio 3.3
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Aspect ratio 3.3
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Aspect ratio 5
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Aspect ratio 5
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Aspect ratio 8.67
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Aspect ratio 8.67
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Continuation

Algorithm in this case: continuation in A

• Start at one Pareto point (A(x),Q(x))
• Write stationarity conditions via

∇Q(x) + λ∇A(x) = 0
λ(A(x)− A∗) = 0

A(x) ≤ A∗

• Differentiate vs A∗ to get tangent direction[
∇2Q(x) + λ∇2A(x) ∇A(x)

∇A(x)T 0

][
x′

λ′

]
=

[
0
1

]
• Predictor moves a little in tangent direction
• Correct prediction via local solver (e.g. Newton)
• Can re-use Hessians, etc for more efficiency
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Which parameterization?

What if Pareto frontier goes vertical?

• Can switch to using Q as continuation parameter
• Or use a pseudo-arclength parameter
• Generalizations to more than two functions are available
(e.g. normal boundary intersection)
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Things to ask over coffee

• How many derivatives do I really need?
• Stability objectives or constraint (c.f. Max Ruth on Monday)
• Continuation and numerical bifurcation analysis?
• Other problems where you’d like to understand tradeoffs?
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