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Challenges (2019 edition)

1. Costly and “black box” physics computations

- Each step: MHD equilibrium solve, transport, coil design, ...
- Several times per step for finite-difference gradients

2. Managing tradeoffs

- How do we choose the weights in the x> measure? By gut?
- Varying the weights does not expose tradeoffs sensibly

3. Dealing with uncertainties
- What you simulate # what you build!
4. Global search
- How to avoid getting stuck in local minima?



Progress

- Collaboration has made a lot of progress on

- Faster simulations, with derivatives
- Optimizing under uncertainty

- Limited progress on global search (TuRBO)
- Still less on tradeoffs and constraints



Background: Unconstrained Optimization

Assume ¢ : R" — R is C?, seek
minimize ¢(x) over x € R"
Standard (local) strategy from an adequate guess x°:

- Approximate ¢ near x* by a model (usu. quadratic)
- Minimize the model to find x*t' (linear algebra)

- Avoid over-stepping by line search, trust region, etc
(globalization)

Lots of room for cleverness, using problem structure.



Newton Framework

Quadratic model:

S0 + ) ~ B(X) + Vo () u + %uw(x’?)u
Model gradient: Vé(x?) + Hy(x*)u.
Minimized at u = —Hg(x*) ="'V (x*) (if H pos def).
Lots of standard methods fudge H in some way:

- For convergence (e.g. trust region)

- For cost and convenience (e.g. BFGS)

Quadratic convergence = asymptotically get Newton steps.



Nonlinear Least Squares

1
P(x) = EHJC(X)H2 where f: R" — R™;  V(x) = J(X)'f(x),J(x) = f(x)
Gauss-Newton idea:
minimize |If(x") + J(x")p®*
and set x*1 = x® + a;,p*. Modified Newton with

Hs(X) +Zfl? YHe, (%) 2 J()TJ(X).

Levenberg-Marquardt: regularize Gauss-Newton
minimize [[f(<") + J(X*)p|I? + A2 Dpx¥||?

where often Dy, = I (Levenberg) or D? = diag)") (Marquardt).
Hessian = J(x)")(Xk) + A2D3.



Nonlinear LS Convergence

Gauss-Newton and Levenberg-Marquardt:

- Quadratic convergence when f(x*) = 0, otherwise linear

- Linear rate depends on conditioning of x(J), |I/|l, [[f(x*)I,
and regularization or step size



A Common Approach

Put everything we care about in a nonlinear LS problem

- fr(x) is deviation from kth target
- Add some weighting (chosen by the user)

But is this actually what we want?

- Choice of target values is unclear
- Choice of weights is unclear

And there are reasons for numerical nervousness:

- Maybe too few objectives (underdetermined LS problems)
- Maybe poorly conditioned (esp. with “large” weights)
- May not have small residual



Tackling Constraints

General problem

G(x)=0, je&

minimize ¢(x) s.t. _
G(x)<0, jeI

Convert into unconstrained optimization / nonlinear equation
solving problem with:

- Fewer degrees of freedom (constraint elimination)
- Same degrees of freedom (penalties and barriers)

- More degrees of freedom (Lagrange multipliers)

Constraint elimination usually only for linear constraints.
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KKT Conditions

o ¢(x)=0, je€&
minimize ¢(x) s.t. i) j
G(x) <0, jeZ

Define the Lagrangian

L% A, 1) = 6(X) + ) NG(¥) + ) mici(x)

€€ €T
KKT conditions are
ViL(x*) =0
¢(x*)=0, i€é& equality constraints
¢(x*)<0, ieZ inequality constraints

>0, 1€l non-negativity of multipliers

Ci(x")pj=0, 1€Z complementary slackness
M



Penalties and Barriers

Want to minimize
¢(x)=0, je&
minimize ¢(x) st. i) j
¢(x)<0, jeZ
Instead minimize for small v
1
6y () = 600 + 5= D 6002 =7 Y log(—¢i(x))
v €€ €T
Note that at minimizer x*:

Vb (X*) = V(x*) + Y AVe(x) + ) Ave(x*

€& €T
where Lagrange multiplier estimates come from the ¢;:

X =ci(x)/y, = v/c(x*)

Standard trick: Penalty to estimate multipliers.
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Managing Tradeoffs

What about using nonlinear least squares for tradeoffs?

More generally, consider f: R" — R™, maybe minimize

W) = Wifi(x).
k=1
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Incompleteness of y-square Combination

Structural Optimization 14, 63-69 © Springer-Verlag 1997

A closer look at drawbacks of minimizing weighted sums of
objectives for Pareto set generation in multicriteria optimization

problems

1. Das and J.E. Dennis
Department of Computational and Applied Mathematics, Rice University of Houston, TX 77251-1892, USA

June 4, 2015 Matt Landreman
Some optimal solutions to a smooth multi-objective problem cannot be
found by minimizing a total
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Exploring the Pareto Frontier

x dominates y if Minimize af; + (1 — a)f2
1 (/
VR () < ful) AN Worse
and not all strict. 07
Best points are: fo o .
Pareto optimal, “! Pareto frontier =—

aka non-dominated,
aka non-inferior,
aka non-efficient.

; Better

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Form Pareto frontier f1

Minimizing >, cyfr, only explores convex hull!
Other methods sample / approximate the full frontier.
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First-order condition

Stationary condition:
{u:u>0}nR} = {0}.
Fritz John stationary condition: for some A > 0,A # 0
JO)TA = 0.

Follows via Motzkin's theorem of the alternative: if A and C are
given matrices, can either solve

Ax <0, (x<ZO0

or
AIX+CTu=0, A>0X#0,u>0

But not both.



Fritz John multiplier geometry
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Fritz John vs KKT

Fritz John condition (with constraints): Weak Pareto for
minimize f(x) s.t. ¢(x) <0
requires A > 0 and p > 0 not both all zero such that

NP (%) + p'c'(x*) =0

pici(x*) =0
Very similar to KKT conditions for constrained opt:

ViL(x*) = 0, L(X, A\, 1) = o(x) + N ce(x) + pcz(x)
¢(x)=0, i€€& equality constraints
(x)<0, ez inequality constraints

wi >0, Iiel non-negativity of multipliers

(X )uj=0, i€l complementary slackness



Constrained vs multi-objective

- First-order conditions are almost the same
- Can mix and match (constrained multi-objective)
- Multi-objective involves many solves to explore space

- Curse of dimensionality: exploration cost scales
exponentially with m
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Find Pareto points via a single-objective optimization problem:

- Linear: ¢(x) = w'f(x)
- Need to consider stationary points to get full frontier.
- Uniform weight sampling # uniform frontier sampling.
* Projection: ¢(x) = > wi(fi(x) — fF)?
- Effectively what is done now.
- Similar tradeoffs to linear scalarization.
- Chebyshev: ¢(x) = max; w;fj(x)
- Nonsmooth where max is non-unique.
- Uniform weight # uniform frontier sampling.
* e-constraint: ¢(x) = fi(x), fj(x) < ¢ forj#i
- Subproblem is constrained.
- Can get uniform sampling in components other than i
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Example: Quasi-symmetry

\ [} 2.036
| [+ 1.024
1012
1.000
0.988
0.976
0.964

1.125
1.095
1.065
1.035
1.005
0.975
N [T 0.945
0.915
0.885

Landreman-Paul QA and QH configurations,
optimized with target aspect ratio 6 and 8.

Q: tradeoff between quasisymmetry and aspect ratio?
(Padidar, Landreman, Bindel)
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Aspect ratio 3.3
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Aspect ratio 3.3
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Aspect ratio 5
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Aspect ratio 5
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Aspect ratio 8.67
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Aspect ratio 8.67
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Algorithm in this case: continuation in A

- Start at one Pareto point (A(x), Q(x))
- Write stationarity conditions via

VQ(x) + A\VA(x) =0
AMA(X) —A")=0
A(x) < A*
- Differentiate vs A* to get tangent direction
V2Q(X) + AV2A(X)  VA(x) [x/] B H
N 1

VA(X)" 0
- Predictor moves a little in tangent direction
- Correct prediction via local solver (e.g. Newton)
- Can re-use Hessians, etc for more efficiency
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Which parameterization?

What if Pareto frontier goes vertical?

- Can switch to using Q as continuation parameter
- Or use a pseudo-arclength parameter

- Generalizations to more than two functions are available
(e.g. normal boundary intersection)
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Things to ask over coffee

- How many derivatives do | really need?

- Stability objectives or constraint (c.f. Max Ruth on Monday)
- Continuation and numerical bifurcation analysis?

- Other problems where you'd like to understand tradeoffs?
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