New Approaches to Computing with Kernels

David Bindel
23 September 2021

Class of 1999, Cornell and UMD

A Numerical Analyst's Apology

This talk was conceived at two times, with two hats:

- Abstract: a numerical analyst excited about algorithms.
- Talk: a numerical analyst excited about kernels.

We will probably not have much time to talk about computing.

Function Fitting: a 1D Warm-Up

Simple and Impossible

Given $\left\{f\left(x_{i}\right)=y_{i}\right\}_{i=1}^{n}$, predict $f(x)$ for $x \neq x_{i}$.

Linear Regression

Given $\left\{f\left(x_{i}\right)=y_{i}\right\}_{i=1}^{n}$, predict $f(x)$ for $x \neq x_{i}$.
Say $f(x) \approx \alpha x+\beta$ and minimize RMS error?

Polynomial Interpolation

Given $\left\{f\left(x_{i}\right)=y_{i}\right\}_{i=1}^{n}$, predict $f(x)$ for $x \neq x_{i}$.
Find a degree- $(m-1)$ polynomial with $p\left(x_{i}\right)=y_{i}$?

Beyond Interpolation

Given $\left\{f\left(x_{i}\right)=y_{i}\right\}_{i=1}^{n}$, predict $f(x)$ for $x \neq x_{i}$.
Find a degree $>(m-1)$ polynomial with $p\left(x_{i}\right)=y_{i}$?
(But which one?)

Behind the Curtain

Can't guess the "best" approach without knowing about f!

Beyond Polynomials

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Some Fundamental Questions

- Do the approximations we want exist? Are they unique?
- How do we reason about error in y? In approximation?
- What do we need to know about f to prove error bounds?
-What happens as we increase the n (and maybe m)?
- How do we generalize to higher-dimensional spaces?

A Linear Algebra Picture

Linear Algebra Picture

Approximate $f(x)$ by $\sum_{j=0}^{m} d_{j} p_{j}(x)$, get $A c=y$:

$$
\left[\begin{array}{ccc}
p_{0}\left(x_{1}\right) & \ldots & p_{m}\left(x_{1}\right) \\
\vdots & & \vdots \\
p_{0}\left(x_{n}\right) & \ldots & p_{m}\left(x_{n}\right)
\end{array}\right]\left[\begin{array}{c}
d_{0} \\
\vdots \\
d_{m}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Terminology:

- p_{0}, \ldots, p_{m} are basis vectors for an approximation space.
- Can declare these to be an orthonormal basis for a Hilbert space with an appropriate inner product
- $\psi: x \mapsto\left[\begin{array}{lll}p_{0}(x) & \ldots & p_{m}(x)\end{array}\right]$ is a feature map
- More generally, consider $\psi: \Omega \rightarrow \mathcal{F}$, some Hilbert space \mathcal{F}. Write approximation as $f(x) \approx s(x)=\langle d, \psi(x)\rangle$.

Interpolation $(\operatorname{dim} \mathcal{F}=n)$

Theorem (Mairhuber-Curtis): In a multidimensional setting, there is a choice of nodes x_{i}, \ldots, x_{n} such that A is singular. (Any fixed approximation space - polynomial or more general.)

If A nonsingular, we say the points are well-poised for interpolation.

Overdetermined $(\operatorname{dim} \mathcal{F}<n)$

Least squares approach: minimize $\|A d-y\|^{2}$

$$
\begin{aligned}
d & =\left(A^{\top} A\right)^{-1} A^{\top} y \\
s(x) & =\psi(x)^{\top}\left(A^{\top} A\right)^{-1} A^{\top} y
\end{aligned}
$$

If A is singular (or nearly), we may regularize: minimize $\|A d-y\|^{2}+\eta\|d\|^{2}$.

Underdetermined $(\operatorname{dim} \mathcal{F}>n)$

Minimum norm approach: minimize $\|d\|^{2}$ s.t. $A d=y$

$$
\begin{aligned}
d & =A^{\top}\left(A A^{\top}\right)^{-1} y \\
c & =\left(A A^{\top}\right)^{-1} y \\
s(x) & =\psi(x)^{\top} A^{\top}\left(A A^{\top}\right)^{-1} y=\psi(x)^{\top} A^{\top} c
\end{aligned}
$$

Expresses a preference among models that fit the data!
Can also regularize this case.

The Kernel Trick

Rewrite via kernel $k(x, y)=\langle\psi(x), \psi(y)\rangle$:

$$
\begin{aligned}
c & =K_{x x}^{-1} y & \left(K_{x x}\right)_{i j}=\left(A A^{\top}\right)_{i j}=k\left(x_{i}, x_{j}\right) \\
s(x) & =k_{x x} c & \left(k_{x x}\right)_{j}=\left(\psi(x)^{\top} A\right)_{j}=k\left(x, x_{j}\right)
\end{aligned}
$$

Subscripts to denote vectors/matrices of function evaluations. Regularized version: $\left(K_{x x}+\eta I\right) c=y$.

Role of Residual

Can also make d as small as possible for fitting a residual:

$$
\operatorname{minimize} \frac{1}{2}\|d\|^{2} \text { s.t. } B \lambda+A d=y
$$

KKT conditions (with c a Lagrange multiplier):

$$
\left[\begin{array}{cc}
K_{x x} & B \\
B^{T} & 0
\end{array}\right]\left[\begin{array}{l}
c \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
y \\
0
\end{array}\right]
$$

Note: Need B nonsingular for well-posedness.

Beyond the Basis

Beyond the Basis

- Story so far involves explicit feature maps.
- But computations only require kernel (inner products).

Putting the Kernel before the Feature Map

Start with symmetric kernel function $k: \Omega \times \Omega \rightarrow \mathbb{R}$. k positive definite if $K_{x x}$ spd for all samples x.

Often assume positive definite and:

- Stationary: $k(x, y)$ depends only on $x-y$
- Isotropic: $k(x, y)$ depends on x and $\|x-y\|$

Both: $k(x, y)=\phi(\|x-y\|), \phi$ a radial basis function.

Have Mercer!

Associate integral operator with continuous spd kernel k :

$$
(\mathcal{K} f)(x)=\int k(x, y) f(y) d y
$$

\mathcal{K} compact (actually Hilbert-Schmidt), so have

$$
\mathcal{K}=\sum_{j=1}^{\infty} \lambda_{j} \psi_{j} \psi_{j}^{*}
$$

and features are $\sqrt{\lambda_{j}} \psi_{j}(x)$.
But features are not really needed! Focus on the kernel.

Building the Native Space

Build a Reproducing Kernel Hilbert Space (RKHS) H, i.e. with evaluation functionals $\left\langle k_{x}, f\right\rangle=f(x)$:

- Observe that $\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}}=k(x, y)$
- For $u(x)=\sum_{i=1}^{N} c_{i} k\left(x_{i}, x\right)$ and $v(x)=\sum_{i=1}^{N} d_{i} k\left(x_{i}, x\right)$, have

$$
\langle u, v\rangle_{\mathcal{H}}=\left\langle\sum_{i} c_{i} k_{x_{i}}, \sum_{j} d_{j} k_{x_{j}}\right\rangle_{\mathcal{H}}=\sum_{i, j} c_{i} k\left(x_{i}, x_{j}\right) d_{j}=d^{\top} K_{x x} c .
$$

Note:

$$
\langle u, v\rangle_{\mathcal{H}}=v_{x}^{\top} K_{x x}^{-1} u_{x}
$$

- Gives pre-Hilbert structure, close to get Hilbert space.
- Same as the Hilbert space where features are an o.n. basis.

This is the "natural" space for doing error analysis.

Common Kernels

Common Kernels

Kernel is chosen by modeler

- Choose Matérn / SE for regularity and simplicity
- Rarely have the intuition to pick the "right" kernel
- Different kernels generate different RKHS
- Common choices are universal (RKHS dense in C(Ω))
- ... though with less data for a "good" choice

Properties of kernel matrices:

- Positive definite by design, but not well conditioned!
- Weyl: $k(r) \in C^{\nu} \Longrightarrow\left|\lambda_{n}\right|=O\left(n^{-\nu-1 / 2}\right)$
- SE case: eigenvalues decay exponentially
- Adding regularization "wipes out" small eigenvalues

Conditionally Positive Definite Case

Consider kernelized "minimize \mathcal{H}-norm of residual" picture:

- Mental picture: $K_{x x}=A A^{T}$ (implicitly)
- But system with $K_{x x}-B M B^{\top}$ gives same answer (for any symmetric M)
- And predictions do not depend on changes in B directions:

$$
\begin{aligned}
s(x) & =K_{x x} c+b(x)^{\top} \lambda \\
& =\left(K_{x x}+\mu(x)^{\top} B^{\top}\right) c+b(x)^{\top} \lambda
\end{aligned}
$$

Conditionally Positive Definite Case

If we have a polynomial fit + minimize \mathcal{H}-norm of residual, OK to "cheat" on the kernel definiteness:

- Symmetric $k: \Omega \times \Omega \rightarrow \mathbb{R}$
- $\left\{p_{j}\right\}$ a basis for $\mathcal{P}_{m-1}(\Omega)$ (poly of degree $<m$)
- k conditionally positive definite of order m if

$$
c \neq 0, \Pi_{x}^{\top} c=0 \quad \Longrightarrow \quad c^{\top} K_{X X} c>0
$$

where $\left[\Pi_{X}\right]_{i j}=p_{j}\left(x_{i}\right)$.
Well-posed problem if Π_{X} nonsingular.
Need X well-poised (for polynomial interpolation).

More Common Kernels

	$\phi(r)$	Order
Cubic	r^{3}	2
Thin-plate	$r^{2} \log r$	2
Multiquadric	$-\sqrt{\gamma^{2}+r^{2}}$	1
Inverse multiquadric	$\left(\gamma^{2}+r^{2}\right)^{-1 / 2}$	0
Gaussian	$\exp \left(-r^{2} / \gamma^{2}\right)$	0

Error Analysis Two Ways

Simple and Impossible

Let $u=\left(u_{1}, u_{2}\right)$. Given u_{1}, what is u_{2} ?

We need an assumption! Two different standard takes.

Being Bounded

$$
\text { Let } u=\left(u_{1}, u_{2}\right) \text { s.t. }\|u\|_{K^{-1}}^{2} \leq 1 \text {. Given } u_{1} \text {, what is } u_{2} \text { ? }
$$

Optimal recovery: $\left\|u_{2}-w\right\|_{S_{-1}}^{2} \leq 1-\left\|u_{1}\right\|_{\left(K_{11}\right)^{-1}}^{2}$

$$
\begin{aligned}
w & =K_{21} K_{11}^{-1} u_{1} \\
S & =K_{22}-K_{21} K_{11}^{-1} K_{12}
\end{aligned}
$$

Being Bayesian

Let $U=\left(U_{1}, U_{2}\right) \sim N(0, K)$. Given $U_{1}=U_{1}$, what is U_{2} ?
Posterior distribution: $\left(U_{2} \mid U_{1}=u_{1}\right) \sim N(w, S)$ where

$$
\begin{aligned}
w & =K_{21} K_{11}^{-1} u_{1} \\
S & =K_{22}-K_{21} K_{11}^{-1} K_{12}
\end{aligned}
$$

From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Cubic Splines

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

- $\phi(r)=r^{3}$ is conditionally positive definite of order 2
- Squared (semi-)norm is bending energy:

$$
\|s\|_{\mathcal{H}}^{2} \propto \frac{1}{2} \int_{\Omega} s^{\prime \prime}(x)^{2} d x
$$

- Linear polynomial tail = rigid body modes

Force, Displacement, Stiffness

Target function $f \in \mathcal{H}^{2}$, known bending energy

$$
E[f]=\frac{1}{2} \int_{\Omega} f^{\prime \prime}(x)^{2} d x
$$

Cubic spline minimizes $E[s]$ s.t. $s\left(x_{i}\right)=f\left(x_{i}\right)$, so

$$
E[s] \leq E[f]
$$

- $f\left(x_{i}\right)$ as displacement, c_{i} as corresponding force
- Kernel matrix $K_{x x}$ is compliance (force \mapsto displacement)
- Residual compliance (inverse stiffness) at x is $P_{x}(x)^{-2}$
- Energy bound for error at X

$$
P_{X}(x)^{-2}(s(x)-f(x))^{2} \leq E[f]-E[s]
$$

General Picture

Interpolant is

$$
s(x)=K_{x x} c+b(x)^{\top} \lambda
$$

Can compute power function $P_{x}(x)$ from factorization; SPD case:

$$
P_{x}(x)^{2}=\phi(0)-K_{x x} K_{x x}^{-1} K_{x x}
$$

Bound is

$$
|s(x)-f(x)| \leq P_{x}(x) \sqrt{\|f\|_{\mathcal{H}}^{2}-\|s\|_{\mathcal{H}}^{2}}
$$

Only thing that is hard to compute generally: $\|f\|_{\mathcal{H}}^{2}$.

Basic ingredient: Gaussian Processes (GPs)

Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
$\mathbb{R}: \quad \operatorname{Normal}\left(\mu, \sigma^{2}\right), \quad \mu, \sigma^{2} \in \mathbb{R}$
$\mathbb{R}^{n}: \quad \operatorname{Normal}(\mu, C), \quad \mu \in \mathbb{R}^{n}, C \in \mathbb{R}^{n \times n}$
$\mathbb{R}^{d} \rightarrow \mathbb{R}: \quad \operatorname{GP}(\mu, k), \quad \mu: \mathbb{R}^{d} \rightarrow \mathbb{R}, k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$

More technically, define GPs by looking at finite sets of points:

$$
\begin{aligned}
& \forall X=\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}^{d}, \\
& \text { have } f_{X} \sim N\left(\mu_{x}, K_{x x}\right), \text { where } \\
& f_{X} \in \mathbb{R}^{n}, \quad\left(f_{X}\right)_{i} \equiv f\left(x_{i}\right) \\
& \mu_{X} \in \mathbb{R}^{n}, \quad\left(\mu_{X}\right)_{i} \equiv \mu\left(x_{i}\right) \\
& K_{X X} \in \mathbb{R}^{n \times n}, \quad\left(K_{x x}\right)_{i j} \equiv k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Being Bayesian

Consider a (zero-mean) GP prior with kernel k :

$$
f \sim \operatorname{GP}(0, k)
$$

Measure at X, apply Bayes to get posterior:

$$
\left(f \mid f_{X}=y\right) \sim \operatorname{GP}(\mu, \tilde{k})
$$

where

$$
\begin{aligned}
\mu(x) & =k_{x x} c \\
\tilde{k}(x, y) & =k(x, x)-k_{x x} K_{x x}^{-1} k_{x y}
\end{aligned}
$$

Specifically, posterior for $f(x)$ at given x is

$$
N\left(k_{x x} c, k(x, x)-k_{x x} K_{x x}^{-1} k_{x x}\right)
$$

Predictive variance $=$ squared power function!

Circumventing Cubic Computation

Cubic Conundrum

The "standard" approach to solving $K_{x x} C=y$ (Gaussian elimination) takes $O\left(n^{3}\right)$ time.

This is OK when n is 2000, very expensive when n is 10000 !
But we know how to go faster if we can compute fast matrix-vector multiplies (MVMs) with $K_{x x}$.

The Road to Fast MVMs

- Low-rank approximation (via inducing variables)
- Non-smooth kernels, small length scales \Longrightarrow large rank
- Only semi-definite
- Sparse approximation
- OK with SE kernels and short length scales
- Less good with heavy tails or long length scales
- May again lose definiteness
- More sophisticated: fast multipole, Fourier transforms
- Same picture as in integral eq world (FMM, PFFT)
- Main restriction: low dimensional spaces (2-3D)
- Kernel a model choice - how does approx affect results?

Example: Structured Kernel Interpolation (SKI)

Write $K_{X x} \approx W^{\top} K_{u u} W$ where

- U is a uniform mesh of m points
- Kuu has Toeplitz or block Toeplitz structure
- Sparse W interpolates values from X to U

Apply Kuu via FFTs in $O(m \log m)$ time.

The Power of Fast MVMs

With MVMs alone, natural to explore nested Krylov subspaces:

$$
\mathcal{K}_{d+1}(\tilde{K}, b)=\operatorname{span}\left\{b, \tilde{K} b, \tilde{K}^{2} b, \ldots, \tilde{K}^{d} b\right\}=\left\{p(\tilde{K}) b: p \in \mathcal{P}_{k}\right\}
$$

Lanczos process: expansion + Gram-Schmidt

$$
\beta_{j} q_{j+1}=\tilde{K} q_{j}-\alpha_{j} q_{j}-\beta_{j-1} q_{j-1}
$$

Lanczos factorization: $\tilde{K} Q_{k}=Q_{k} \bar{T}_{k}$ where

$$
\begin{aligned}
& Q_{k}=\left[\begin{array}{llll}
q_{1} & q_{2} & \ldots & q_{k}
\end{array}\right], \\
& \bar{T}_{k}=\left[\begin{array}{lllll}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} & \\
& & \ddots & \ddots & \ddots \\
& & & \beta_{k-1} & \alpha_{k} \\
\hline & & & \beta_{k}
\end{array}\right]=\left[\begin{array}{c}
T_{k} \\
\hline \beta_{k} e_{k}^{T}
\end{array}\right]
\end{aligned}
$$

The Power of Fast MVMs

Fast MVM with symmetric $\tilde{K} \Longrightarrow$ try Lanczos!

- Incrementally computes $\tilde{K} Q=Q T$ where
- Q has orthonormal columns
- Leading k columns span k-dim Krylov space
- T is tridiagonal
- Building block for
- Solving linear systems (CG)
- Approximating eigenvalues
- Approximating matrix functions: $f(\tilde{K}) b$
- Quadrature vs spectral measure for \tilde{K}
- Fast (three-term recurrence) and elegant...
- Basis for our fast solvers
- And fast kernel selection and tuning, with another trick

Summary and Wrap-Up

The Power of Different Lenses

- "Kernel trick" used to go basis-free
- But there is power in thinking with a basis, too!
- Comes up as a computational tool (next time)
- Kernels can correspond to physics!
- Ex: Cubic spline and thin-plate spline
- Kernel as a Green's function for an elliptic PDE
- Physical interpretation helps understand error analysis
- Optimal recovery and GP interpretation mostly coincide
- But only when data is linear functionals of f
- Ex: Different predictions for non-negativity constraints!
- CPD kernels popular in RBF literature (optimal recovery)
- But also works for Bayesian interp - improper GP priors
- Does appear in Wahba's work, but often overlooked
- Tails are useful even in pos def case

