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Who?

Simons Collaboration: “Hidden Symmetries and Fusion Energy”

https://hiddensymmetries.princeton.edu/

Princeton, NYU, Maryland, IPP Greifswald, Warwick, CU Boulder,
UW Madison, EPFL, ANU, UT Austin, U Arizona.

Cornell group:

• Silke Glas (Simons postdoc)
• Misha Padidar (CAM PhD student)
• Ariel Kellison (CS PhD student)
• Nick Parrilla (predoc student)
• Paco Rilloraza (ugrad student)

with involvement from many others.
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Magnetic confinement basics
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Magnetic confinement basics

4



Magnetic confinement basics

• Particles confined to magnetic surfaces (invariant tori).
• Drift cancels over the full trajectory.

(V. I. Arnold, Small denominators and problems of stability of motion
in classical and celestial mechanics, Russ. Math. Surv., 1963.)

5



The big name: Tokamaks
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https://dx.doi.org/10.1155/2014/940965


Stellarator Concept
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Wendelstein 7-X Machine

Operating since 2015-12-10;
plasma discharges lasting up to 30 min.
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Optimization Under Uncertainty

Low construction tolerances:
• NCSX: 0.08%
• Wendelstein 7-X: 0.1% – 0.17%

Higher tolerances as coil opt goal!

Also want tolerance to
• Changes to control parameters
• Uncertainty in physics or model
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Risk-neutral OUU

Want efficient OUU in ∼ 200 dimensions

min
x∈Ω

EU[f(x− U)]
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(Recent) Prior: Monte Carlo Approach

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
f(x0) 5.38718
10% 5.83611
5% 5.96501
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Entries 100000
Mean 7.071
Std Dev 0.3034
f(x0) 6.65137
10% 7.48375
5% 7.60976
2% 7.83457
1% 8.03636
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Robustness & mean perf greatly improved (w/ ∼ 108 evals)
J.-F. Lobsien, M. Drevlak, T. Kruger, S. Lazerson, C. Zhu, T. S. Pedersen,
Improved performance of stellarator coil design optimization,

Journal of Plasma Physics, 2020. 11



Our Approach: fast TuRBO-ADAM

Black: ref; red: TuRBO-ADAM 10mm; blue: TuRBO-ADAM 20mm.

Evaluate objective with FOCUS from PPPL.

• Global search with modified TuRBO
• Local refinement with ADAM with control variate

Costs about 0.01% the evaluation budget. 12



Global search: TuRBO for OUU

Combine two ideas:

• TuRBO: Trust-Region Bayesian Optimization
(Eriksson, Pearce, Gardner, Turner, Poloczek, 2019)

• BO under uncertainty (Beland and Nair, 2017)
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TuRBO idea
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• Do a rough global sampling at M points.
• Local Gaussian process models of f near each point.
• Thompson sampling to choose which local model (and
trust region) to refine next.
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OUU adaptation

• TuRBO builds GP models for f(x) (nominal objective)
• Simple transform from GP for f(x) to GP for EU[f(x+ U)]
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ADAM + control variates

• Regular ADAM: stochastic gradient algorithm based on

g(x) = ∇f(x+ U)

for a random draw U (can also do mini-batch).
• Variance reduction with control variates (Wang, Chen,
Smola, Xing, 2013)

g(x) = ∇f(x+ U) + α(ĝ(x)− E[ĝ(x)])
ĝ(x) = ∇f(x) + HU.

• True Hessian not avail, so set H to be an approximate
Hessian (BFGS approximation via gradients from ADAM).
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And more!

https://hiddensymmetries.princeton.edu/
(Look at 2019 annual meeting for more talks!)
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