Surrogate Methods for Optimizing Fusion Device Designs

David Bindel
12 December 2019

Department of Computer Science Cornell University

Acknowledgements

Simons Collaboration: "Hidden Symmetries and Fusion Energy"

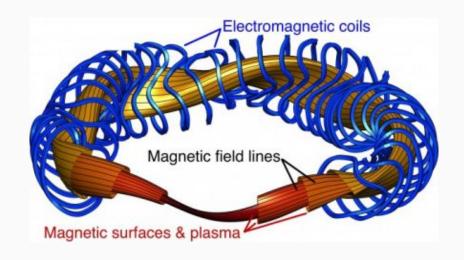
https://hiddensymmetries.princeton.edu/

Cornell group:

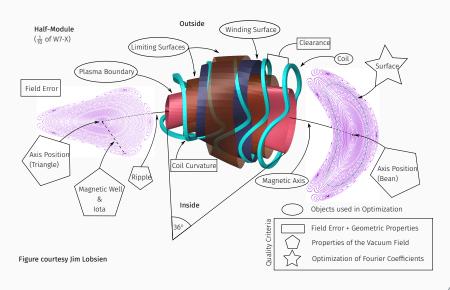
- Silke Glas (Simons postdoc)
- Misha Padidar (CAM PhD student)
- · Curran Muhlberger (CS lecturer)
- · Ariel Kellison (CS MS student)
- Nick Parrilla (predoc student)

with several others on the kernels + optimization side (Eric Lee, Xinran Zhu, Darian Nwankwo, Cameron Ibrahim, Leo Huang, Yuanxi Shen) + former students (David Eriksson, Kun Dong) + collaborators (Peter Frazier, Andrew Wilson) + their students...

Stellarator Concept



What Makes a Good Stellarator?



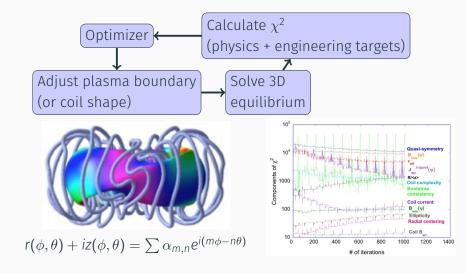
Stellarator Quality Measures

What makes an "optimal" stellarator?

- · Approximates field symmetries (which measures?)
- · Satisfies macroscopic and local stability
- Divertor fields for particle and heat exhaust
- · Minimizes collisional and energetic particle transport
- · Minimizes turbulent transport
- Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations, uncertainties, and computational costs.

How Do We Optimize? (STELLOPT Approach)



Challenges

Stellopt: Minimize χ^2 objective over parameter space *C*:

$$\chi^{2}(x) = \sum_{k=1}^{m} \frac{J_{k}(x)}{\sigma_{k}^{2}}, \quad J_{k}(x) = (F_{k}(x) - F_{k}^{*})^{2}$$

Solve via Levenberg-Marquardt, GA, differential evolution (avoids gradient information apart from finite differences)

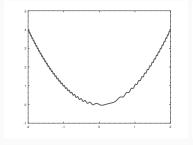
Why doesn't this framework suffice?

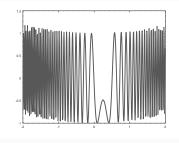
- 1. Costly and "black box" physics computations
- 2. Managing tradeoffs (scalarization misses things)
- 3. Dealing with uncertainties
- 4. Global search

Tool: Surrogates (aka response surfaces, metamodels)

From local to global

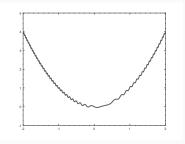
Can exploit model for local min; global requires we explore.

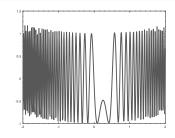




Torn and Zilinskas (1987): For general continuous f, convergence to global minimum \implies dense sampling

From local to global



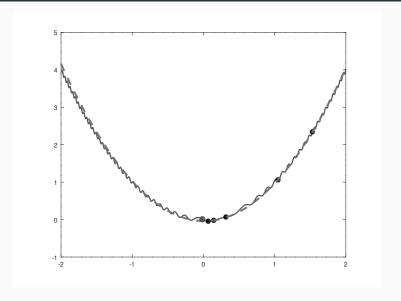


Both problems have local minima that cause issues:

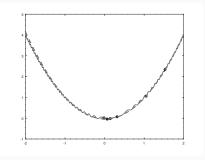
- · Left: Good smooth approximations available
- · Right: "Glassy" case little obvious global guidance

These are not equally difficult (especially in high dimensions). Some evidence that we may be (partly) nice.

From local to global: response surfaces



Response surface



Example approach (two-stage):

- Measure f(x) on a sample set (experimental design)
- · Fit a surrogate or response surface by least squares
- Minimize approximating function

Quality depends on model complexity and noise level

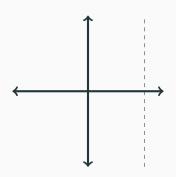
Variations on a theme

Basic idea: Replace expensive f by cheaper \hat{f} (using data)

- Type of surrogate
 - · Non-interpolatory (e.g. poly regression, smoothing splines)
 - · Interpolatory (e.g. kernel interpolation approaches)
- Surrogate and hyperparameter selection
 - · Noise parameters, length scales, etc
- Adaptivity of surrogate
 - · Two-stage: Mostly fix surrogate after initial fit
 - · One-stage: Continuously update surrogate
- · Balancing exploration and exploitation
 - Bayesian interpretations (many types)
 - Frequentist / approximation theoretic
 - · Candidate point framework

Focus today: a few things involving kernel-based surrogates.

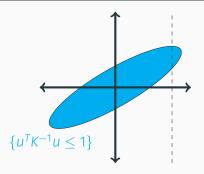
Simple and Impossible



Let $u = (u_1, u_2)$. Given u_1 , what is u_2 ?

We need an assumption! Two different standard takes.

Being Bounded



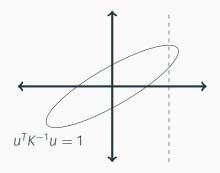
Let
$$u = (u_1, u_2)$$
 s.t. $||u||_{K^{-1}}^2 \le 1$. Given u_1 , what is u_2 ?

Optimal recovery:
$$\|u_2 - w\|_{S^{-1}}^2 \le 1 - \|u_1\|_{(K_{11})^{-1}}^2$$

$$w = K_{21}K_{11}^{-1}u_1$$

$$S = K_{22} - K_{21}K_{11}^{-1}K_{12}$$

Being Bayesian



Let
$$U = (U_1, U_2) \sim N(0, K)$$
. Given $U_1 = u_1$, what is U_2 ?

Posterior distribution: $(U_2|U_1=u_1) \sim N(w,S)$ where

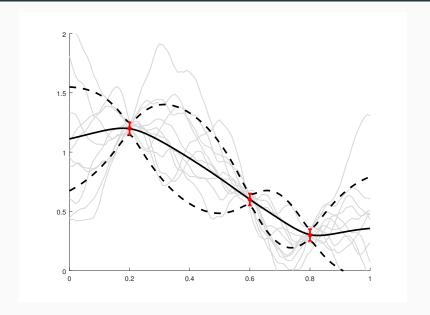
$$w = K_{21}K_{11}^{-1}u_1$$

$$S = K_{22} - K_{21}K_{11}^{-1}K_{12}$$

Optimal Recovery: From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Gaussian Processes: Predict with Posteriors



Kernel Interpolation Mechanics

Consider positive definite kernel $k(x, y) = \phi(||x - y||)$. Approximate $s(x) \approx f(x)$ from $f(x_j) = y_j$ via

$$s(x) = \sum_{j=1}^{n} k(x, x_j) c_j$$

Interpolation conditions

$$K_{XX}c = y$$

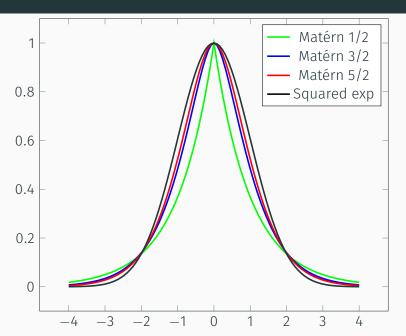
where $[K_{XX}]_{ij} = k(x_i, x_j)$. Error at x associated with

$$v(x) = k(x, x) - k_{xx} K_{xx}^{-1} k_{xx}$$

 $k_{xx} := k_{xx}^{T} = \begin{bmatrix} k(x, x_1) & \dots & k(x, x_n) \end{bmatrix}$

Call v(x) the predictive variance at x (GP setting) or squared power function at x (optimal recovery setting).

Common Kernels



Optimal Recovery vs Bayesian Approach

Different error frameworks:

Optimal recovery / variational approach

$$|f(x) - s(x)| \le \sqrt{v(x) \left(|f|_{\mathcal{H}}^2 - |s|_{\mathcal{H}}^2\right)}$$

Minimize worst-case error subject to regularity condition (bound on norm of f in RKHS).

Bayesian approach

$$(f(x) | f(x_i) = y_i) \sim N(s(x), v(x))$$

Uncertainty / error characterized via Gaussian

- Approaches coincide when data/predictions are linear
- Different error philosophies \implies different regularization, kernel selection, ...
- · Really different for nonlinear data/predictions

Details Under the Rug

Several topics for a different time:

- Kernel selection and hyper-parameter tuning
- · Mean fields and combinining GPs with fixed bases
- · Multi-output GPs and prediction with co-variates
- Scaling to large numbers of data points
- Dimensionality issues

What matters for now: prediction + uncertainty

Bayesian Optimization

- Assume prior $f \sim GP(\mu, k)$
- · Condition on observations so far:

$$(f|f(x_i) = y_i) \sim GP(\hat{\mu}, \hat{k})$$

$$\hat{\mu}(x) = \mu(x) + k_{XX}c$$

$$K_{XX}c = y - \mu$$

$$\hat{k}(x, y) = k(x, y) - k_{XX}K_{XX}^{-1}k_{XY}$$

· Choose next point to optimize an acquisition function, e.g.

$$\begin{aligned} \mathsf{EI}(x) &= \mathbb{E}[f_{\mathrm{best}} - f(x)]_{+} \\ &= (f_{\mathrm{best}} - \hat{\mu}(x))\Phi(Z) + \hat{\sigma}(x)\phi(Z), \\ Z &= \frac{f_{\mathrm{best}} - \hat{\mu}(x)}{\hat{\sigma}(x)} \end{aligned}$$

Many other acquisition functions (some non-Bayesian)

Variational Approach

- Assume $|f| \le C$
- Obtain lower bounds based on observations so far:

$$f(x) \ge s(x) - \sqrt{v(x)(C^2 - |s|^2)}$$

$$s(x) = k_{xx}c = \sum_{i} k(x, x_i)c_i$$

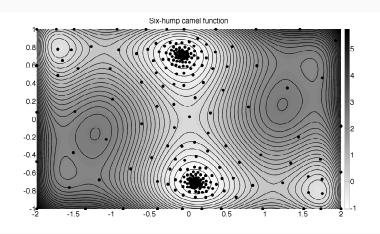
$$v(x) = k(x, x) - k_{xx}K_{xx}^{-1}k_{xx}$$

$$c = K_{xx}^{-1}y$$

$$|s|^2 = c^Ty$$

- Choose next point to minimize lower bound
- Provably globally convergent (Eriksson and B)
- V similar to UCB/LCB acquisition in Bayesian case

Exploration vs Exploitation (Eriksson and B)



Linearity of Gaussians

Linear functionals of a GP are Gaussian:

- Use to incorporate derivatives in BO
- Use to incorporate integral constraints
- · What else can we do with this?

Optimization Under Uncertainty

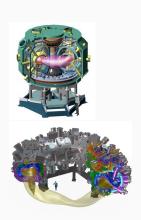
Low construction tolerances:

- · NCSX: 0.08%
- Wendelstein 7-X: 0.1% 0.17%

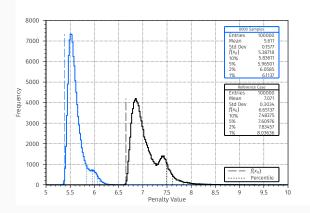
Want: higher tolerances as coil optimization goal!

Also want tolerance to

- Changes to control parameters
- · Uncertainty in physics or model

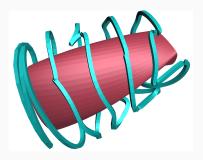


Monte Carlo Approach

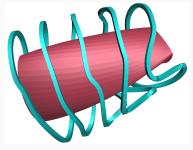


Robustness & average performance significantly improved [Lobsien, Drevlak, Sunn Pedersen]

Example



Classic Coil Optimization (Deviation 0 mm, Penalty = 4.19)



Stochastic Optimization (Deviation 2.5 mm, Penalty = 2.24)

Risk-Neutral OUU: Easy Case

- Expected objective $\hat{J}(x) = \mathbb{E}_{U}[J(x+U)], U \sim \omega$
- Model J from GP prior with mean 0, kernel $k(x,y) = \phi(||x-y||)$
- · Posterior for J has mean and kernel

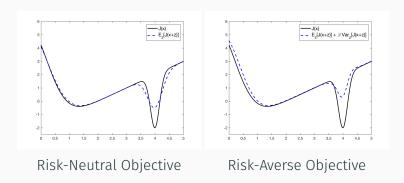
$$\mu(x) = \sum_{i} c_{i} \phi(\|x - x_{i}\|) \qquad \hat{k}(x, y) = \phi(0) - k_{xX} K_{XX}^{-1} k_{Xy}$$

· Can derive associated posterior for $\hat{\jmath}$:

$$\check{\mu}(x) = \sum_{i} c_{i} \tilde{\phi}(\|x - x_{i}\|) \qquad \check{k}(x, y) = C - \tilde{k}_{xX} K_{XX}^{-1} \tilde{k}_{Xy}
 \tilde{\phi} = \phi * \omega, \qquad C = \int \mathcal{F}(\phi) \mathcal{F}(\omega)^{2}$$

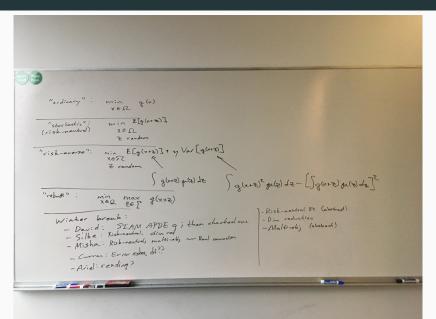
- · Now apply usual BO framework
- More general uncertainty: apply BQO (Frazier and Toscano)

Risk Neutral vs Risk Averse



- Risk averse objective is *not* linear in *J* (not a GP model)
- · Can still do BO (initial work with Peter Frazier)

Where We Are



Next Steps

- We can call Stellopt as a black box (via RPC)
- · We have initial tests with a low-dimensional problem
- Know how to do some OUU
 - Need to code the thing up
 - · Need to talk to Jim-Felix Lobsien for a problem!
 - · Risk averse form is a bit further behind
- Interested in multi-objective as well
 - · Need to integrate some standard methods
 - Modeling user implicit preferences? (Raul Marban and Peter Frazier)
- Looking at kernel surrogates beyond standard GP/RBF
 - · Incorporate non-Gaussian effects, upper/lower bounds, etc
 - · Allows some error analysis with less regularity

Ideally: also looking for applications from you!