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Stellarator Concept
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What Makes a Good Stellarator?
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Stellarator Quality Measures

What makes an “optimal” stellarator?

• Approximates field symmetries (which measures?)
• Satisfies macroscopic and local stability
• Divertor fields for particle and heat exhaust
• Minimizes collisional and energetic particle transport
• Minimizes turbulent transport
• Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations,
uncertainties, and computational costs.
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How Do We Optimize? (STELLOPT Approach)

Optimizer Calculate χ2

(physics + engineering targets)

Adjust plasma boundary
(or coil shape)

Solve 3D
equilibrium

r(ϕ, θ) + iz(ϕ, θ) =
∑

αm,nei(mϕ−nθ)
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Challenges

Stellopt: Minimize χ2 objective over parameter space C:

χ2(x) =
m∑
k=1

Jk(x)
σ2k

, Jk(x) = (Fk(x)− F∗k)
2

Solve via Levenberg-Marquardt, GA, differential evolution
(avoids gradient information apart from finite differences)

Why doesn’t this framework suffice?

1. Costly and “black box” physics computations
2. Managing tradeoffs (scalarization misses things)
3. Dealing with uncertainties
4. Global search

Tool: Surrogates (aka response surfaces, metamodels)
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From local to global

Can exploit model for local min; global requires we explore.
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Torn and Zilinskas (1987): For general continuous f,
convergence to global minimum =⇒ dense sampling
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From local to global
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Both problems have local minima that cause issues:

• Left: Good smooth approximations available
• Right: “Glassy” case — little obvious global guidance

These are not equally difficult (especially in high dimensions).
Some evidence that we may be (partly) nice.
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From local to global: response surfaces
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Response surface
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Example approach (two-stage):

• Measure f(x) on a sample set (experimental design)
• Fit a surrogate or response surface by least squares
• Minimize approximating function

Quality depends on model complexity and noise level
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Variations on a theme

Basic idea: Replace expensive f by cheaper f̂ (using data)

• Type of surrogate
• Non-interpolatory (e.g. poly regression, smoothing splines)
• Interpolatory (e.g. kernel interpolation approaches)

• Surrogate and hyperparameter selection
• Noise parameters, length scales, etc

• Adaptivity of surrogate
• Two-stage: Mostly fix surrogate after initial fit
• One-stage: Continuously update surrogate

• Balancing exploration and exploitation
• Bayesian interpretations (many types)
• Frequentist / approximation theoretic
• Candidate point framework

Focus today: a few things involving kernel-based surrogates.
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Simple and Impossible

Let u = (u1,u2). Given u1, what is u2?

We need an assumption! Two different standard takes.
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Being Bounded

{uTK−1u ≤ 1}

Let u = (u1,u2) s.t. ∥u∥2K−1 ≤ 1. Given u1, what is u2?

Optimal recovery: ∥u2 − w∥2S−1 ≤ 1− ∥u1∥2(K11)−1

w = K21K−111 u1
S = K22 − K21K−111 K12
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Being Bayesian

uTK−1u = 1

Let U = (U1,U2) ∼ N(0, K). Given U1 = u1, what is U2?

Posterior distribution: (U2|U1 = u1) ∼ N(w, S) where

w = K21K−111 u1
S = K22 − K21K−111 K12
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Optimal Recovery: From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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Gaussian Processes: Predict with Posteriors
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Kernel Interpolation Mechanics

Consider positive definite kernel k(x, y) = ϕ(∥x− y∥).
Approximate s(x) ≈ f(x) from f(xj) = yj via

s(x) =
n∑
j=1

k(x, xj)cj

Interpolation conditions

KXXc = y

where [KXX]ij = k(xi, xj). Error at x associated with

v(x) = k(x, x)− kxXK−1XX kXx

kxX := kTXx =
[
k(x, x1) . . . k(x, xn)

]
Call v(x) the predictive variance at x (GP setting) or squared
power function at x (optimal recovery setting).
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Common Kernels
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Optimal Recovery vs Bayesian Approach

Different error frameworks:

• Optimal recovery / variational approach

|f(x)− s(x)| ≤
√
v(x)

(
|f|2H − |s|2H

)
Minimize worst-case error subject to regularity condition
(bound on norm of f in RKHS).

• Bayesian approach

(f(x) | f(xi) = yi) ∼ N(s(x), v(x))

Uncertainty / error characterized via Gaussian
• Approaches coincide when data/predictions are linear
• Different error philosophies =⇒
different regularization, kernel selection, ...

• Really different for nonlinear data/predictions
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Details Under the Rug

Several topics for a different time:

• Kernel selection and hyper-parameter tuning
• Mean fields and combinining GPs with fixed bases
• Multi-output GPs and prediction with co-variates
• Scaling to large numbers of data points
• Dimensionality issues

What matters for now: prediction + uncertainty
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Bayesian Optimization

• Assume prior f ∼ GP(µ, k)
• Condition on observations so far:

(f | f(xi) = yi) ∼ GP(µ̂, k̂)
µ̂(x) = µ(x) + kxXc
KXXc = y− µ

k̂(x, y) = k(x, y)− kxXK−1XX kXy
• Choose next point to optimize an acquisition function, e.g.

EI(x) = E[fbest − f(x)]+
= (fbest − µ̂(x))Φ(Z) + σ̂(x)ϕ(Z),

Z =
fbest − µ̂(x)

σ̂(x)
• Many other acquisition functions (some non-Bayesian)
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Variational Approach

• Assume |f| ≤ C
• Obtain lower bounds based on observations so far:

f(x) ≥ s(x)−
√
v(x) (C2 − |s|2)

s(x) = kxXc =
∑
i
k(x, xi)ci

v(x) = k(x, x)− kxXK−1XX kXx
c = K−1XX y

|s|2 = cTy

• Choose next point to minimize lower bound
• Provably globally convergent (Eriksson and B)
• V similar to UCB/LCB acquisition in Bayesian case
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Exploration vs Exploitation (Eriksson and B)
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Linearity of Gaussians

Linear functionals of a GP are Gaussian:

• Use to incorporate derivatives in BO
• Use to incorporate integral constraints
• What else can we do with this?
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Optimization Under Uncertainty

Low construction tolerances:
• NCSX: 0.08%
• Wendelstein 7-X: 0.1% – 0.17%

Want: higher tolerances as coil opti-
mization goal!

Also want tolerance to
• Changes to control parameters
• Uncertainty in physics or model
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Monte Carlo Approach

8000 Samples
Entries 100000
Mean 5.611
Std Dev 0.1577
f(x0) 5.38718
10% 5.83611
5% 5.96501
2% 6.0585
1% 6.1137
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Robustness & average performance significantly improved

[Lobsien, Drevlak, Sunn Pedersen]
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Example

Classic Coil Optimization
(Deviation 0 mm, Penalty =
4.19)

Stochastic Optimization
(Deviation 2.5 mm, Penalty =
2.24)
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Risk-Neutral OUU: Easy Case

• Expected objective Ĵ(x) = EU[J(x+ U)], U ∼ ω

• Model J from GP prior with mean 0, kernel
k(x, y) = ϕ(∥x− y∥)

• Posterior for J has mean and kernel

µ(x) =
∑
i
ciϕ(∥x− xi∥) k̂(x, y) = ϕ(0)− kxXK−1XX kXy

• Can derive associated posterior for Ĵ:

µ̌(x) =
∑
i
ciϕ̃(∥x− xi∥) ǩ(x, y) = C− k̃xXK−1XX k̃Xy

ϕ̃ = ϕ ∗ ω, C =

∫
F(ϕ)F(ω)2

• Now apply usual BO framework
• More general uncertainty: apply BQO (Frazier and Toscano)
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Risk Neutral vs Risk Averse

Risk-Neutral Objective Risk-Averse Objective

• Risk averse objective is not linear in J (not a GP model)
• Can still do BO (initial work with Peter Frazier)
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Where We Are

31



Next Steps

• We can call Stellopt as a black box (via RPC)
• We have initial tests with a low-dimensional problem
• Know how to do some OUU

• Need to code the thing up
• Need to talk to Jim-Felix Lobsien for a problem!
• Risk averse form is a bit further behind

• Interested in multi-objective as well
• Need to integrate some standard methods
• Modeling user implicit preferences? (Raul Marban and
Peter Frazier)

• Looking at kernel surrogates beyond standard GP/RBF
• Incorporate non-Gaussian effects, upper/lower bounds, etc
• Allows some error analysis with less regularity

Ideally: also looking for applications from you!
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