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Eigenvalues Two Ways

What can we tell from partial spectral information
(eigenvalues and/or vectors)
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Claim: Most spectral analyses involve one of two perspectives:

- Approximate something via a few (extreme) eigenvalues.
- Look at all the eigenvalues (or all in a range).



Can One Hear the Shape of a Drum?
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“You mean, if you had perfect pitch could you find the
shape of a drum.” — Mark Kac (quoting Lipmann Bers)
American Math Monthly, 71966
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What Do You Hear?

What information hides in the eigenvalue distribution?

1. Discretizations of Laplacian: something like Weyl's law
2. Sparse E-R random graphs: Wigner semicircular law

3. Some other random graphs: Wigner semicircle + a bit
(Farkas et al, Phys Rev E (64), 2001)

4. “Real” networks: less well understood

Goal: Explore by estimating eigenvalue distributions (fast).



A Bestiary of Matrices

- Adjacency matrix: A

- Laplacian matrix: L=D — A

- Unsigned Laplacian: L =D + A

- Random walk matrix: P = AD~" (or D 'A)

- Normalized adjacency: A = D~"/2AD~1/2

- Normalized Laplacian: L = | — A = D~/2.D~/2
- Modularity matrix: B = A — 49°
- Motif adjacency: W =A20 A

All have examples of co-spectral graphs
... through spectrum uniquely identifies quantum graphs



Density of States

Spectra define a generalized function (a density):
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where fis an analytic test function. Smooth to get a picture: a
spectral histogram or kernel density estimate.



Exploring Spectral Densities

Kernel polynomial method (see Weisse, Rev. Modern Phys.)

- Spectral distribution on [-1,1] is a generalized function:

1 N

[ nose) ax= 4 30

k=1

- Write f(x) = 372, ¢ Tj(x) and u(x) = -2, djgj(x), where
J23 i00T(x) dx = by

- Estimate d; = tr(T;(H)) by stochastic methods

- Truncate series for pu(x) and filter (avoid Gibbs)

=

Much cheaper than computing all eigenvalues!

Alternatives: Lanczos (Golub-Meurant), maxent (Roder-Silver)



Stochastic Trace and Diagonal Estimation

Z € R" with independent entries, mean 0 and variance 1.

E[(Z® HZ)|] = Z h;;E[ZiZ;] = hj;
J

Var[(Z® HZ)] = ) _hi.
j

Serves as the basis for stochastic estimation of

- Trace (Hutchinson, others; review by Toledo and Avron)

- Diagonal (Bekas, Kokiopoulou, and Saad)

Independent probes = 1/v/N convergence (usual MC).
(Can go beyond independent probes.)



Example: PGP Network
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Spike (non-smoothness) at eigenvalues of 0 leads to
inaccurate approximation. 10



Motifs and Symmetry

Suppose PH = HP. Then

Y a max invariant subspace for P =

VY a max invariant subspace for H

So local symmetry — localized eigenvectors.

Simplest example: P swaps (/,))

- e; — ej an eigenvector of P with eigenvalue —1
* ej — ej an eigenvector of A with eigenvalue

d', (i.)eé
A=pzlei—¢) = ,
0, otherwise.
- All other eigenvectors (eigenvalue —1) satisfy v; = v;

"



Motifs in Spectrum
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Motif Filtering
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Motif “spikes” slow convergence - deflate motif eigenvectors!
If P e R™™ an orthonormal basis for the quotient space,

- Apply estimator to PTAP to reduce size for m < n.
- or use Projp(Z) to probe the desired subspace.

13



Diagonal Estimation and LDoS

Diagonal estimation also useful for local DoS vg(x);
in the symmetric case with H = QAQ', have

/ FX)vr(x) dx = f(H) e = eLQf(\)Q"ey
ve() = 3 a3 6(x— )
j=1

DoS is sum of local densities of states:

n

u(¥) =D vk(x)

R=1
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KPM for LDoS

Same game, different moments:

- Estimate d; = [T;(H)]rx by diag estimation

- Truncate series for u(x) and filter (avoid Gibbs)

Diagonal estimator gives moments for all kR simultaneously!

Alternatives: Lanczos (Golub-Meurant), maxent (Roder-Silver)
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LDoS Information

Can compute common centrality measures with LDoS
- Estrada centrality: exp(vA)gk

* Resolvent centrality: [(/ —~A)™'],,

Some motifs associated with localized eigenvectors:

- Chief example: Null vectors of A supported on leaves.

- Use LDoS + topology to find motifs?

Other uses: clustering and role discovery. What else?



Exploring Spectral Densities (with David Gleich)

- Compute spectrum of normalized Laplacian / RW matrix
- Compare KPM to full eigencomputation

Things we know

- Eigenvalues in [-1,1]; nonsymmetric in general
- Stability: change d edges, have
ANed <N < Nigd

- kth moment = P(return after kR-step random walk)

- Eigenvalue cluster near 1 ~ well-separated clusters
- Eigenvalue cluster near -1 ~ bipartite structure

- Eigenvalue cluster near 0 ~ leaf clusters

What else can we “hear”?
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Erdos (local)
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Internet topology
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Internet topology (local)
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PGP (local)
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Yeast (local)
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DBLP 2010 (LAW)
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N = 326186, nnz = 1615400, 80 s (1000 moments, 10 probes)
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Hollywood 2009 (LAW)
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N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10
probes)
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Barabasi-Albert model
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Scale-free network (5000 nodes, 4999 edges)
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Watts-Strogatz
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Small world network (5000 nodes, 260000 edges)



Model Verification: BTER
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(a) Preprocessing: (b) Phase 1: Local links (c) Phase 2: Global links
Distribution of nodes into within each affinity block across affinity blocks
affinity blocks

Kolda et al, SISC (36), 2014

Block Two-Level Erdés-Rényi model (BTER)

- First Phase: Erd0s-Rényi Blocks

- Second Phase: Using Chung-Lu Model to connect blocks
with pj; = p(d;, d;)
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Model Verification: BTER
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Figure 2: BTER model for Erdos collaboration network. 3



What Do You Hear?
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- Dong, Benson, Bindel (KDD 2019).
- Longer talk at ILAS 2019 (slides online)

Latest:
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