Understanding Graphs through Spectral Densities

David Bindel 17 July 2019

Department of Computer Science Cornell University

Acknowledgements

Thanks **Kun Dong** and Austin Benson, along with Anna Yesypenko, Moteleolu Onabajo, Jianqiu Wang.

Also: NSF DMS-1620038.

Eigenvalues Two Ways

What can we tell from *partial* spectral information (eigenvalues and/or vectors)

Claim: Most spectral analyses involve one of two perspectives:

- · Approximate something via a few (extreme) eigenvalues.
- Look at *all* the eigenvalues (or all in a range).

Can One Hear the Shape of a Drum?

"You mean, if you had perfect pitch could you find the shape of a drum." — Mark Kac (quoting Lipmann Bers) American Math Monthly, 1966 What information hides in the eigenvalue distribution?

- 1. Discretizations of Laplacian: something like Weyl's law
- 2. Sparse E-R random graphs: Wigner semicircular law
- 3. Some other random graphs: Wigner semicircle + a bit (Farkas *et al*, Phys Rev E (64), 2001)
- 4. "Real" networks: less well understood

Goal: Explore by estimating eigenvalue distributions (fast).

A Bestiary of Matrices

- Adjacency matrix: A
- Laplacian matrix: L = D A
- Unsigned Laplacian: L = D + A
- Random walk matrix: $P = AD^{-1}$ (or $D^{-1}A$)
- Normalized adjacency: $\bar{A} = D^{-1/2}AD^{-1/2}$
- Normalized Laplacian: $\bar{L} = I \bar{A} = D^{-1/2}LD^{-1/2}$
- Modularity matrix: $B = A \frac{dd^{T}}{2n}$
- Motif adjacency: $W = A^2 \odot A$

All have examples of co-spectral graphs

... through spectrum uniquely identifies quantum graphs

Density of States

Spectra define a generalized function (a density):

$$tr(f(H)) = \int f(\lambda)\mu(\lambda) \, dx = \sum_{k=1}^{N} f(\lambda_k)$$

where *f* is an analytic test function. Smooth to get a picture: a *spectral histogram* or *kernel density estimate*.

Exploring Spectral Densities

Kernel polynomial method (see Weisse, Rev. Modern Phys.)

 \cdot Spectral distribution on [-1, 1] is a generalized function:

$$\int_{-1}^{1} \mu(x) f(x) \, dx = \frac{1}{N} \sum_{k=1}^{N} f(\lambda_k)$$

- Write $f(x) = \sum_{j=1}^{\infty} c_j T_j(x)$ and $\mu(x) = \sum_{j=1}^{\infty} d_j \phi_j(x)$, where $\int_{-1}^{1} \phi_j(x) T_k(x) dx = \delta_{jk}$
- Estimate $d_j = tr(T_j(H))$ by stochastic methods
- Truncate series for $\mu(x)$ and filter (avoid Gibbs)

Much cheaper than computing all eigenvalues!

Alternatives: Lanczos (Golub-Meurant), maxent (Röder-Silver)

 $Z \in \mathbb{R}^n$ with independent entries, mean 0 and variance 1.

$$E[(Z \odot HZ)_i] = \sum_j h_{ij}E[Z_iZ_j] = h_{ii}$$
$$Var[(Z \odot HZ)_i] = \sum_j h_{ij}^2.$$

Serves as the basis for stochastic estimation of

- Trace (Hutchinson, others; review by Toledo and Avron)
- Diagonal (Bekas, Kokiopoulou, and Saad)

Independent probes $\implies 1/\sqrt{N}$ convergence (usual MC). (Can go beyond independent probes.)

Example: PGP Network

Spike (non-smoothness) at eigenvalues of 0 leads to inaccurate approximation.

Suppose PH = HP. Then

 ${\mathcal V}$ a max invariant subspace for P \implies ${\mathcal V}$ a max invariant subspace for H

So local symmetry \implies localized eigenvectors.

Simplest example: P swaps (i, j)

- $e_i e_j$ an eigenvector of P with eigenvalue -1
- $e_i e_j$ an eigenvector of \overline{A} with eigenvalue

$$\lambda =
ho_{ar{A}}(e_i - e_j) = egin{cases} d^{-1}, & (i,j) \in \mathcal{E} \ 0, & ext{otherwise}. \end{cases}$$

• All other eigenvectors (eigenvalue -1) satisfy $v_i = v_j$

Motifs in Spectrum

Motif Filtering

Motif "spikes" slow convergence – deflate motif eigenvectors! If $P \in \mathbb{R}^{n \times m}$ an orthonormal basis for the quotient space,

- Apply estimator to $P^{T}\overline{A}P$ to reduce size for $m \ll n$.
- or use $Proj_P(Z)$ to probe the desired subspace.

Diagonal estimation also useful for *local* DoS $\nu_R(x)$; in the symmetric case with $H = Q\Lambda Q^T$, have

$$\int f(x)\nu_k(x) \, dx = f(H)_{kk} = e_k^T Q f(\Lambda) Q^T e_k$$
$$\nu_k(x) = \sum_{j=1}^n q_{kj}^2 \, \delta(x - \lambda_j)$$

DoS is sum of local densities of states:

$$\mu(x) = \sum_{k=1}^{n} \nu_k(x)$$

Same game, different moments:

- Estimate $d_j = [T_j(H)]_{kk}$ by diag estimation
- Truncate series for $\mu(x)$ and filter (avoid Gibbs)

Diagonal estimator gives moments for all k simultaneously!

Alternatives: Lanczos (Golub-Meurant), maxent (Röder-Silver)

Can compute common centrality measures with LDoS

- Estrada centrality: $exp(\gamma A)_{kk}$
- Resolvent centrality: $\left[(I \gamma \bar{A})^{-1}\right]_{kk}$

Some motifs associated with localized eigenvectors:

- · Chief example: Null vectors of \overline{A} supported on leaves.
- Use LDoS + topology to find motifs?

Other uses: clustering and role discovery. What else?

Exploring Spectral Densities (with David Gleich)

- Compute spectrum of normalized Laplacian / RW matrix
- Compare KPM to full eigencomputation

Things we know

- Eigenvalues in [-1,1]; nonsymmetric in general
- Stability: change d edges, have

$$\lambda_{j-d} \leq \hat{\lambda}_j \leq \lambda_{j+d}$$

- *k*th moment = *P*(return after *k*-step random walk)
- $\cdot\,$ Eigenvalue cluster near 1 \sim well-separated clusters
- + Eigenvalue cluster near -1 \sim bipartite structure
- + Eigenvalue cluster near 0 \sim leaf clusters

What else can we "hear"?

Erdos

Erdos (local)

Internet topology

Internet topology (local)

PGP (local)

Yeast (local)

DBLP 2010 (LAW)

N = 326186, *nnz* = 1615400, 80 s (1000 moments, 10 probes)

Hollywood 2009 (LAW)

N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10 probes)

Barabási-Albert model

Scale-free network (5000 nodes, 4999 edges)

Watts-Strogatz

Small world network (5000 nodes, 260000 edges)

Model Verification: BTER

Kolda et al, SISC (36), 2014

Block Two-Level Erdős-Rényi model (BTER)

- First Phase: Erdős-Rényi Blocks
- Second Phase: Using Chung-Lu Model to connect blocks with $p_{ij} = p(d_i, d_j)$

Model Verification: BTER

Figure 2: BTER model for Erdos collaboration network.

What Do You Hear?

Latest:

- Dong, Benson, Bindel (KDD 2019).
- Longer talk at ILAS 2019 (slides online)