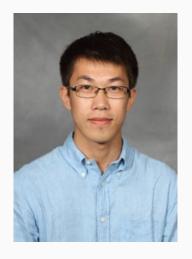
Understanding Graphs through Spectral Densities

26 Sep 2018

Department of Computer Science Cornell University

Acknowledgements



Thanks **Kun Dong** (Cornell CAM), along with Anna Yesypenko, Moteleolu Onabajo, Jianqiu Wang.

Also: NSF DMS-1620038.

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different.

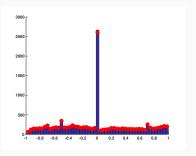
Goethe

Stories of Spectral Geometry/Graph Theory

- Dynamics (operator on functions over manifold or graph)
 - · Example: Continuous time diffusion + Simon-Ando theory
 - Diffuse according to heat kernel $\exp(-tLD^{-1})$
 - · Rapid mixing + slow equilibration across bottlenecks
 - · Regions of rapid mixing via extreme eigenvectors
- Counting and measure (quadratic form)
 - · Example: Spectral partitioning
 - Measure cut sizes via $x^T L x/4$, $x \in \{\pm 1\}^n$, relax to \mathbb{R}^n
 - $\lambda_2(L)$ bounds cuts (Cheeger), partition with Fiedler vector
- Geometric embedding (pos semidef form / kernel)
 - Example: Spectral coordinates via $R = L^{\dagger}$
 - Diffusion distances: $d_{ij}^2 = r_{ii}^2 2r_{ij} + r_{jj}^2$
 - First few eigenvectors of *R* give coordinates that approximate distance

Eigenvalues Two Ways

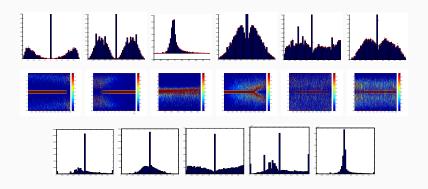
What can we tell from *partial* spectral information (eigenvalues and/or vectors)



Claim: Most spectral analyses involve one of two perspectives:

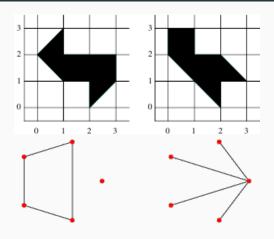
- · Approximate something via a few (extreme) eigenvalues.
- · Look at all the eigenvalues (or all in a range).

Today in Three Acts

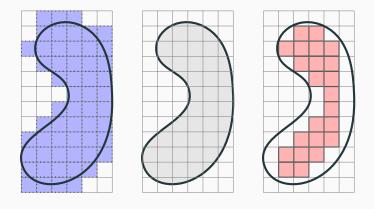


- · Act 1: Spectral densities
- Act 2: Algorithms and approximations
- Act 3: Spectral densities of "real world" graphs

Can One Hear the Shape of a Drum?

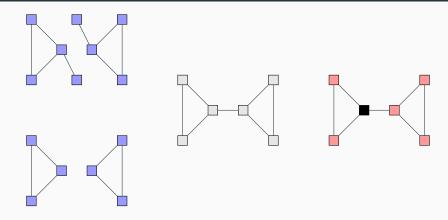


"You mean, if you had perfect pitch could you find the shape of a drum." — Mark Kac (quoting Lipmann Bers) American Math Monthly, 1966



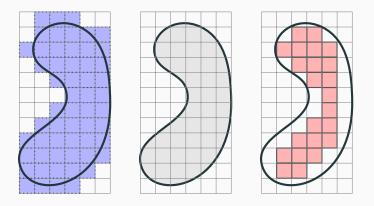
Use
$$\mathcal{H}_{lo}\supset\mathcal{H}\supset\mathcal{H}_{hi}$$
 to get $\lambda_{k,lo}\leq\lambda_{k}\leq\lambda_{k,hi}$

$$\lambda_k = \min_{\dim(\mathcal{V}) = k, \mathcal{V} \subset \mathcal{H}} \left(\max_{v \in \mathcal{V}} \rho_{\mathsf{L}}(v) \right)$$



Use
$$\mathcal{H}_{lo} \supset \mathcal{H} \supset \mathcal{H}_{hi}$$
 to get $\lambda_{k,lo} \leq \lambda_k \leq \frac{\lambda_{k,hi}}{\lambda_{k,hi}}$

$$\lambda_k = \min_{\dim(\mathcal{V}) = k, \mathcal{V} \subset \mathcal{H}} \left(\max_{v \in \mathcal{V}} \rho_L(v) \right)$$



Weyl law (asymptotics for $N(x) = \{ \text{\# eigenvalues } \leq x \}$):

$$\lim_{x\to\infty}\frac{N(x)}{x^{d/2}}=(2\pi)^{-d}\omega_d\operatorname{vol}(\Omega).$$

A Bestiary of Matrices

- · Adjacency matrix: A
- Laplacian matrix: L = D A
- Unsigned Laplacian: L = D + A
- Random walk matrix: $P = AD^{-1}$ (or $D^{-1}A$)
- Normalized adjacency: $\bar{A} = D^{-1/2}AD^{-1/2}$
- Normalized Laplacian: $\bar{L} = I \bar{A} = D^{-1/2}LD^{-1/2}$
- Modularity matrix: $B = A \frac{dd^T}{2n}$
- Motif adjacency: $W = A^2 \odot A$

All have examples of co-spectral graphs

... through spectrum uniquely identifies quantum graphs

What information hides in the eigenvalue distribution?

- 1. Discretizations of Laplacian: something like Weyl's law
- 2. Sparse E-R random graphs: Wigner semicircular law
- 3. Some other random graphs: Wigner semicircle + a bit (Farkas *et al*, Phys Rev E (64), 2001)
- 4. "Real" networks: less well understood

But computing all eigenvalues seems expensive!

Reminder: Spectral Mapping

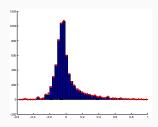
Consider a matrix H, and let f be analytic on the spectrum.

Then if $H = V\Lambda V^{-1}$,

$$f(H) = Vf(\Lambda)V^{-1}$$
.

(generalizes to non-diagonalizable case)

Another Perspective: Density of States



Spectra define a generalized function (a density):

$$\operatorname{tr}(f(H)) = \int f(\lambda)\mu(\lambda) dx = \sum_{j=k}^{N} f(\lambda_k)$$

where *f* is an analytic test function. Smooth to get a picture: a *spectral histogram* or *kernel density estimate*.

Example: Estrada Index

Consider

$$\operatorname{tr}(\exp(\alpha A)) = \sum_{k=1}^{\infty} \frac{\alpha^k}{k!} \cdot (\# \operatorname{closed} \operatorname{random} \operatorname{walks} \operatorname{of length} k).$$

- · Global measure of connectivity in a graph.
- · Can clearly be computed via DoS.
- · Generalizes to other weights.

Heat Kernels

DoS information equivalent to looking at the *heat kernel trace*:

$$h(s) = tr(exp(-sH)) = \mathcal{L}[\mu](s)$$

Use $H = LD^{-1}$ (continuous time random walk generator) $\implies h(s)/N = P(\text{self-return after time } s \text{ from uniform start}).$

Power Moments

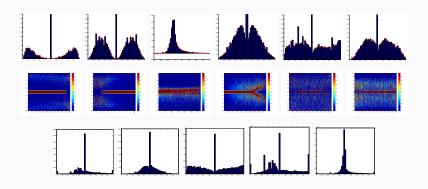
DoS information equivalent to looking at the *power moments*:

$$tr(H^{j}).$$

Natural interpretation for matrices associated with graphs:

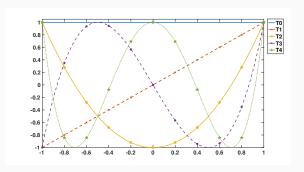
- A: number of length k cycles.
- \bar{A} or P: return probability for k-step random walk (times N).
- · L: ??

Today in Three Acts



- Act 1: Spectral densities
- · Act 2: Algorithms and approximations
- · Act 3: Spectral densities of "real world" graphs

Chebyshev Moments



For numerics, prefer Chebyshev moments to power moments:

$$d_j = T_j(A)$$

where $T_j(z) = \cos(j\cos^{-1}(z))$ is the jth Chebyshev polynomial:

$$T_0(z) = 1$$
, $T_1(z) = z$, $T_{k+1}z = 2zT_k(z) - T_{k-1}(z)$.

Exploring Spectral Densities

Kernel polynomial method (see Weisse, Rev. Modern Phys.)

• Spectral distribution on [-1,1] is a generalized function:

$$\int_{-1}^{1} \mu(x) f(x) \, dx = \frac{1}{N} \sum_{k=1}^{N} f(\lambda_k)$$

- Write $f(x) = \sum_{j=1}^{\infty} c_j T_j(x)$ and $\mu(x) = \sum_{j=1}^{\infty} d_j \phi_j(x)$, where $\int_{-1}^{1} \phi_j(x) T_k(x) dx = \delta_{jk}$
- Estimate $d_i = tr(T_i(H))$ by stochastic methods
- Truncate series for $\mu(x)$ and filter (avoid Gibbs)

Much cheaper than computing all eigenvalues!

Alternatives: Lanczos (Golub-Meurant), maxent (Röder-Silver)

Stochastic Trace and Diagonal Estimation

 $Z \in \mathbb{R}^n$ with independent entries, mean 0 and variance 1.

$$E[(Z \odot HZ)_i] = \sum_{j} h_{ij} E[Z_i Z_j] = h_{ii}$$

$$Var[(Z \odot HZ)_i] = \sum_{j} h_{ij}^2.$$

Serves as the basis for stochastic estimation of

- Trace (Hutchinson, others; review by Toledo and Avron)
- · Diagonal (Bekas, Kokiopoulou, and Saad)

Independent probes $\implies 1/\sqrt{N}$ convergence (usual MC).

Beyond Independent Probes

For probes $Z = [Z_1, \dots, Z_s]$, have exact diagonal

$$d = [(A \odot ZZ^T)e] \oslash [(Z \odot Z)e]$$

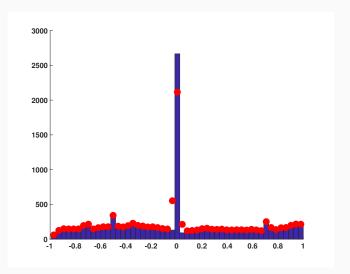
if $Z_{i,:}Z_{j,:}^{T} = 0$ whenever $A_{ij} \neq 0$.

Idea:

- Pick rows $\{Z_{i,:}\}$ such that $Z_{i,:} \perp Z_{j,:}$ whenever $A_{ij} \neq 0$
- \cdot A an adjacency matrix \implies graph coloring.

Combined with randomization, still gives unbiased estimates.

Example: PGP Network



Spike (non-smoothness) at eigenvalues of 0 leads to inaccurate approximation.

Motifs and Symmetry

Suppose PH = HP. Then

 ${\cal V}$ a max invariant subspace for ${\it P} \implies$

 ${\cal V}$ a max invariant subspace for ${\cal H}$

So local symmetry \implies localized eigenvectors.

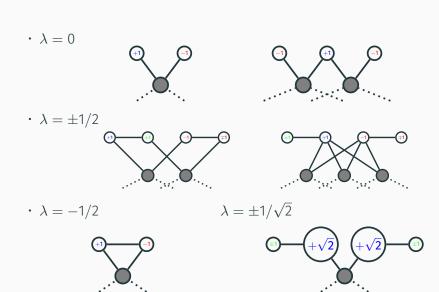
Simplest example: P swaps (i, j)

- $e_i e_j$ an eigenvector of P with eigenvalue -1
- $e_i e_j$ an eigenvector of \bar{A} with eigenvalue

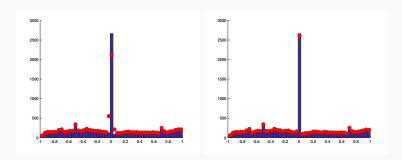
$$\lambda = \rho_{\bar{A}}(e_i - e_j) = \begin{cases} d^{-1}, & (i, j) \in \mathcal{E} \\ 0, & \text{otherwise.} \end{cases}$$

· All other eigenvectors (eigenvalue -1) satisfy $v_i = v_j$

Motifs in Spectrum



Motif Filtering



Motif "spikes" slow convergence – deflate motif eigenvectors! If $P \in \mathbb{R}^{n \times m}$ an orthonormal basis for the quotient space,

- Apply estimator to $P^{T}\overline{A}P$ to reduce size for $m \ll n$.
- or use $Proj_P(Z)$ to probe the desired subspace.

Diagonal Estimation and LDoS

Diagonal estimation also useful for local DoS $\nu_k(x)$; in the symmetric case with $H = Q\Lambda Q^T$, have

$$\int f(x)\nu_k(x) dx = f(H)_{kk} = e_k^T Q f(\Lambda) Q^T e_k$$
$$\nu_k(x) = \sum_{j=1}^n q_{kj}^2 \delta(x - \lambda_j)$$

DoS is sum of local densities of states:

$$\mu(x) = \sum_{k=1}^{n} \nu_k(x)$$

KPM for LDoS

Same game, different moments:

- Estimate $d_i = [T_i(H)]_{kk}$ by diag estimation
- Truncate series for $\mu(x)$ and filter (avoid Gibbs)

Diagonal estimator gives moments for all k simultaneously!

Alternatives: Lanczos (Golub-Meurant), maxent (Röder-Silver)

LDoS Information

Can compute common centrality measures with LDoS

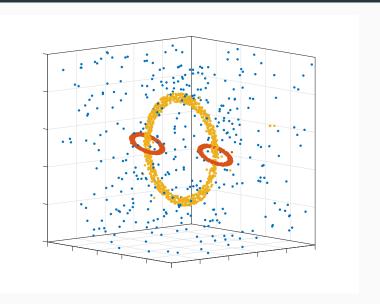
- Estrada centrality: $\exp(\gamma A)_{kk}$
- Resolvent centrality: $[(I-\gamma \bar{A})^{-1}]_{kk}$

Some motifs associated with localized eigenvectors:

- · Chief example: Null vectors of \bar{A} supported on leaves.
- Use LDoS + topology to find motifs?

What else?

LDoS and Clustering



Phase Retrieval in Graph Reconstruction

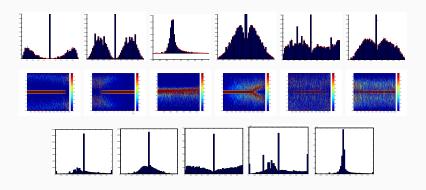
Reconstruct graph from fully resolved LDoS at all nodes?

- Assume $H = Q\Lambda Q^T$
- · No multiple eigenvalues \implies know |Q| and Λ
- Can we recover signs in Q?

Feels a little like phase retrieval...

Of course, we usually have noisy LDoS estimates!

Today in Three Acts



- Act 1: Spectral densities
- Act 2: Algorithms and approximations
- · Act 3: Spectral densities of "real world" graphs

Exploring Spectral Densities (with David Gleich)

- · Compute spectrum of normalized Laplacian / RW matrix
- Compare KPM to full eigencomputation

Things we know

- Eigenvalues in [-1,1]; nonsymmetric in general
- · Stability: change d edges, have

$$\lambda_{j-d} \le \hat{\lambda}_j \le \lambda_{j+d}$$

- kth moment = P(return after k-step random walk)
- \cdot Eigenvalue cluster near 1 \sim well-separated clusters
- \cdot Eigenvalue cluster near -1 \sim bipartite structure
- \cdot Eigenvalue cluster near 0 \sim leaf clusters

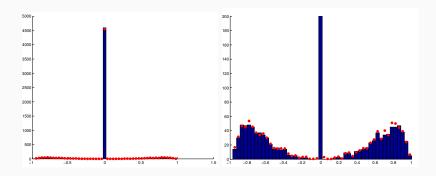
What else can we "hear"?

Experimental setup

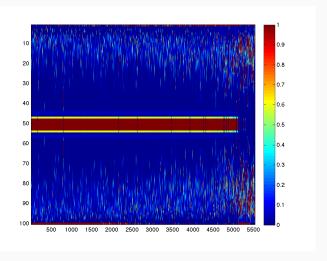
- · Global DoS
 - 1000 Chebyshev moments
 - 10 probe vectors (componentwise standard normal)
 - · Histogram with 50 bins
- Local DoS
 - · 100 Chebyshev moments
 - 10 probe vectors (componentwise standard normal)
 - Plot smoothed density on [-1, 1]
 - Spectrally order nodes by density plot

Suggestions for better pics are welcome!

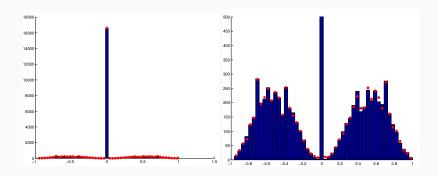
Erdos



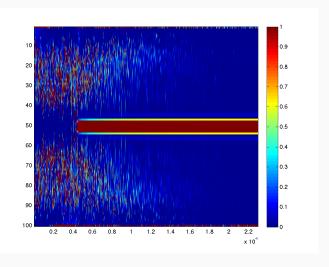
Erdos (local)



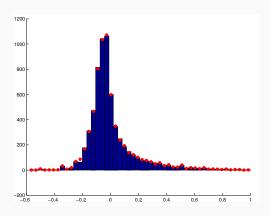
Internet topology



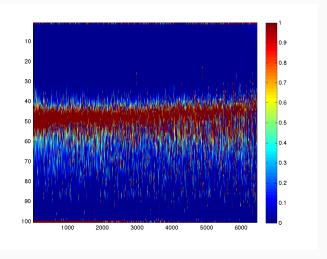
Internet topology (local)



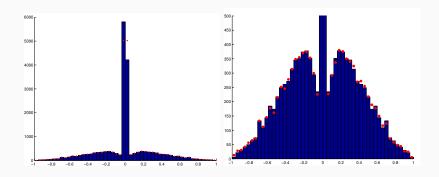
Marvel characters



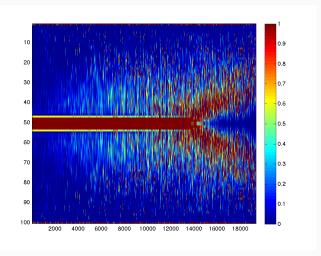
Marvel characters (local)

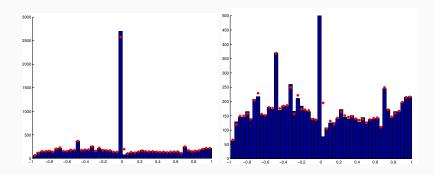


Marvel comics

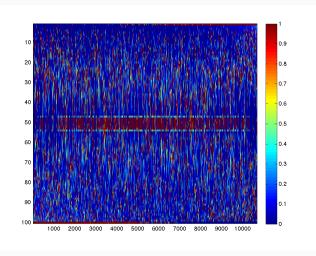


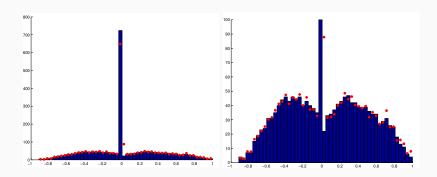
Marvel comics (local)



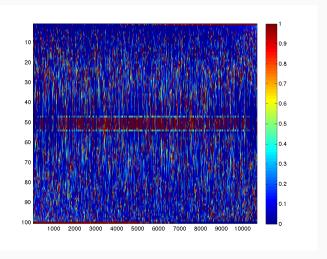


PGP (local)



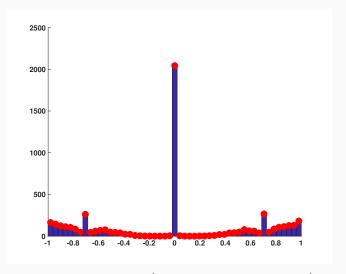


Yeast (local)



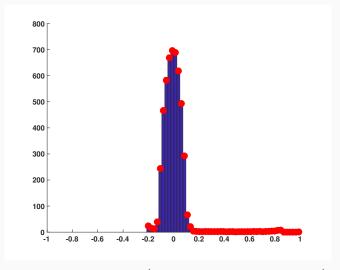
What about random graph models?

Barabási-Albert model



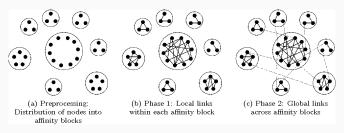
Scale-free network (5000 nodes, 4999 edges)

Watts-Strogatz



Small world network (5000 nodes, 260000 edges)

Model Verification: BTRE



Kolda et al, SISC (36), 2014

Block Two-Level Erdős-Rényi model (BTER)

- · First Phase: Erdős-Rényi Blocks
- Second Phase: Using Chung-Lu Model to connect blocks with $p_{ij} = p(d_i, d_j)$

Model Verification: BTER

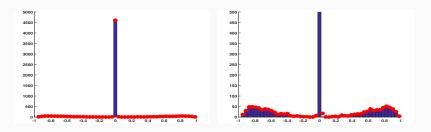


Figure 1: Erdos collaboration network.

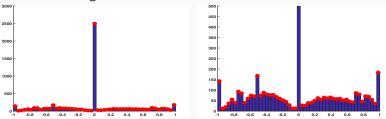
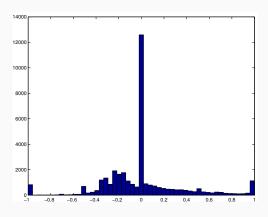


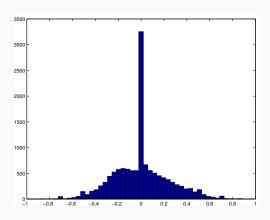
Figure 2: BTER model for Erdos collaboration network.

And a few more...

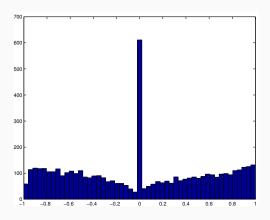
Enron emails (SNAP)



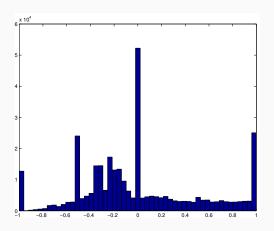
Reuters911 (Pajek)



US power grid (Pajek)

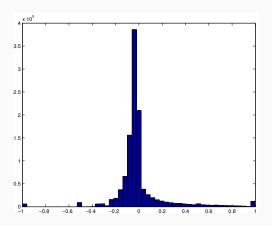


DBLP 2010 (LAW)



N = 326186, nnz = 1615400, 80 s (1000 moments, 10 probes)

Hollywood 2009 (LAW)



N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10 probes)

Questions for You?

- · Any isospectral graphs for multiple matrices?
- · Can we recover topology from (exact) LDoS?
- · Variance reduction in diagonal estimators?
- · Random graphs with spectra that look "real"?
- Compression of moment information for diag estimators?
- More applications?

What Do You Hear?

