# Model Reduction for Edge-Weighted Personalized PageRank

D. Bindel

11 Apr 2016

# The Computational Science & Engineering Picture



- MEMS
- Smart grids
- Networks

- Linear algebra
- Approximation theory
- Symmetry + **structure**
- HPC / cloud
- Simulators
- Solvers

### Collaborators

Wenlei Xie LinkedIn
David Bindel Cornell
Johannes Gehrke Microsoft
Al Demers Cornell

## PageRank Problem



Goal: Find "important" vertices in a network

- Basic approach uses only topology
- Weights incorporate prior info about important nodes/edges

## PageRank Model



- Random surfer model:  $x^{(t+1)} = \alpha P x^{(t)} + (1 \alpha)v$  where  $P = AD^{-1}$
- Stationary distribution: Mx = b where  $M = (I \alpha P), b = (1 \alpha)v$

## Edge Weight vs Node Weight Personalization



Introduce personalization parameters  $w \in \mathbb{R}^d$  in two ways:

Node weights:  $M \times (w) = b(w)$ Edge weights:  $M(w) \times (w) = b$ 



D. Bindel Purdue 11 Apr 2016 6 / 33

## Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

Some work on edge weight personalization

- ObjectRank/ScaleRank: personalize weights for different edge types
- But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization

 D. Bindel
 Purdue
 11 Apr 2016
 7 / 33

## Edge Weight Parameterizations

Different ways to personalize  $\implies$  different algorithm options

**① Linear**: Take an edge of type *i* with probability  $\alpha w_i$ 

$$P(w) = \sum_{i=1}^{d} w_i P^{(i)}$$

**② Scaled linear**: Take an edge with probability  $\propto$  (linear) edge weight

$$P(w) = A(w)D(w)^{-1}, \quad A(w) = \sum_{i=1}^{d} w_i A^{(i)}, \quad D(w) = \sum_{i=1}^{d} w_i D^{(i)},$$

Fully nonlinear: Both A and P depend nonlinearly on w

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (\*)

D. Bindel Purdue 11 Apr 2016 8 / 33

### Model Reduction



Model reduction procedure from physical simulation world:

- Offline: Construct reduced basis  $U \in \mathbb{R}^{n \times k}$
- Offline: Choose  $\geq k$  equations to pick approximation  $\hat{x} = Uy$
- Online: Solve for y(w) given w and reconstruct  $\hat{x}$



## Reduced Basis Construction: SVD (aka POD/PCA/KL)



## **Choosing Good Spaces**

What is the best possible approximation  $\hat{x} = Uy$ ?

$$\min_{y} \|Uy - x(w)\|_2 \le \sigma_{k+1} \|x\|_2 + e_{\text{interp}}(w)$$

where

$$e_{\text{interp}}(w) = \left\| x(w) - \sum_{j=1}^{r} x(w_j)c_j(w) \right\|_2$$

is error in an interpolant.

- Pay attention where x has large derivatives!
- Also suggests sampling strategies (sparse grids, adaptive methods)

## Approximation Ansatz

Want  $r = MUy - b \approx 0$ . Consider two approximation conditions:

| Method                | Ansatz                     | Properties                                                       |
|-----------------------|----------------------------|------------------------------------------------------------------|
| Bubnov-Galerkin       | $U^T r = 0$                | Good accuracy empirically Fast for $P(w)$ linear                 |
| DEIM<br>(collocation) | $\min \ r_{\mathcal{I}}\ $ | Fast even for nonlinear $P(w)$<br>Complex cost/accuracy tradeoff |

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin – future work.

### Bubnov-Galerkin Method



• Linear case:  $w_i$  = probability of transition with edge type i

$$M(w) = I - \alpha \left( \sum_{i} w_{i} P^{(i)} \right), \quad \tilde{M}(w) = I - \alpha \left( \sum_{i} w_{i} \tilde{P}^{(i)} \right)$$

where we can precompute  $\tilde{P}^{(i)} = U^T P^{(i)} U$ 

ullet Nonlinear: Cost to form  $ilde{M}(w)$  comparable to cost of PageRank!

11 Apr 2016

## Discrete Empirical Interpolation Method (DEIM)



- Ansatz: Minimize  $||r_{\mathcal{I}}||$  for chosen indices  $\mathcal{I}$
- Only need a few rows of M (and associated rows of U)
  - If given A(w), also need column sums for normalization.
- Difference from physics applications: high-degree nodes!

### **Error Behavior**

Similar error analysis framework for both Galerkin and DEIM

$${\sf Consistency} + {\sf Stability} = {\sf Accuracy}$$

- Consistency: Does the subspace contain good approximants?
- Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

$$||x - Uy|| \le \min_{z} C||x - Uz||$$

D. Bindel

Purdue

## Standard Quasi-Optimality Approach

• Define a solution projector:

 $\Pi x = \text{approximate solution when true solution is } x$ 

Note that  $\Pi U = U$ .

• The error projector  $I-\Pi$  maps a true solution to error

$$e = x - \Pi x = (I - \Pi)x$$

Note that  $(I - \Pi)U = 0$ .

• If  $e_{\min} = x - Uz$  is the smallest norm error in the space, then

$$e = (I - \Pi)x - (I - \Pi)Uz = (I - \Pi)e_{\min}$$

Therefore, a bound on  $||I - \Pi|| \le 1 + ||\Pi||$  establishes quasi-optimality.

## Quasi-Optimality: Galerkin and DEIM

Galerkin: 
$$\Pi = U\tilde{M}^{-1}W^TM$$
  $\tilde{M} \equiv W^TMU$ 

DEIM: 
$$\Pi = U\tilde{M}^{\dagger}M_{\mathcal{I},:}$$
  $\tilde{M} \equiv M_{\mathcal{I},:}U$ 

- ullet Key to stability:  $ilde{M}$  far from singular
- $\bullet$  Suggests pivoting schemes for "good"  ${\cal I}$  in DEIM
  - Also helps to explicitly enforce  $\sum_i \hat{x}_i = 1$
- Can bound  $\|\Pi\|$  offline for Galerkin + linear parameterization.

### Interpolation Costs

Consider subgraph relevant to one interpolation equation:



- ullet Really care about weights of edges incident on  ${\mathcal I}$
- Need more edges to normalize (unless A(w) linear)
- Cost to include  $i \in \mathcal{I}$ :  $|\{j, k : a_{ij} \neq 0 \text{ and } a_{kj} \neq 0\}|$
- High in/out degree are expensive but informative

## Interpolation Cost and Accuracy

- Key question: how to choose I to balance cost vs accuracy?
- ullet Want to pick  ${\mathcal I}$  once, so look at rows of

$$Z = \begin{bmatrix} M(w_1)U & M(w_2)U & \ldots \end{bmatrix}$$

for sample parameters  $w^{(i)}$ .

- Pivoted QR-like greedy row selection with proxy measures for
  - Cost: Nonzeros in row (+ assoc columns if normalization required)
  - Accuracy: Residual when projecting row onto those previously selected
- Several heuristics for cost/accuracy tradeoff (see paper)

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

### **Online Costs**

If  $\ell=\#$  PR components needed, online costs are:

Form 
$$\tilde{M}$$
  $O(dk^2)$  for B-G More complex for DEIM Factor  $\tilde{M}$   $O(k^3)$  Solve for  $y$   $O(k^2)$  Form  $Uv$   $O(k\ell)$ 

Online costs **do not** depend on graph size! (unless you want the whole PR vector)

### **Example Networks**

### DBLP (citation network)

- 3.5M nodes / 18.5M edges
- Seven edge types seven parameters
- $\bullet$  P(w) linear
- Competition: ScaleRank

### Weibo (micro-blogging)

- 1.9M nodes / 50.7M edges
- Weight edges by topical similarity of posts
- Number of parameters = number of topics (5, 10, 20)

(Studied global and local PageRank – see paper for latter.)

## Singular Value Decay



## **DBLP** Accuracy



## DBLP Running Times (All Nodes)



## Weibo Accuracy



## Weibo Running Times (All Nodes)



## Application: Learning to Rank

Goal: Given  $T = \{(i_q, j_q)\}_{q=1}^{|T|}$ , find w that mostly ranks  $i_q$  over  $j_1$ . (c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

$$\frac{\partial x}{\partial w_j} = M(w)^{-1} \left[ \alpha \frac{\partial P(w)}{\partial w_j} x(w) \right]$$

Dominant cost: d+1 solves with the PageRank system M(w)

- One PageRank solve to evaluate a loss function
- One PageRank solve per parameter to evaluate gradients

## Application: Learning to Rank

Goal: Given  $T = \{(i_q, j_q)\}_{q=1}^{|T|}$ , find w that mostly ranks  $i_q$  over  $j_1$ . (c.f. Backstrom and Leskovec, WSDM 2011)

- Standard: Gradient descent on full problem
  - One PR computation for objective
  - One PR computation for each gradient component
  - Costs d + 1 PR computations per step
- With model reduction
  - Rephrase objective in reduced coordinate space
  - Use factorization to solve PR for objective
  - Re-use same factorization for gradient



## **DBLP Learning Task**



(8 papers for training + 7 params)

### The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

### Cost per Iteration:

| Method    | Standard | Bubnov-Galerkin | DEIM-200 |
|-----------|----------|-----------------|----------|
| Time(sec) | 159.3    | 0.002           | 0.033    |

### Roads Not Taken

In the paper (but not the talk)

- Selecting interpolation equations for DEIM
- Localized PageRank experiments (Weibo and DBLP)
- Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...

### Questions?

Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier Wenlei Xie, David Bindel, Johannes Gehrke, and Al Demers

KDD 2015, paper 117

#### Sponsors:

- NSF (IIS-0911036 and IIS-1012593)
- iAd Project from the National Research Council of Norway

## Welcome to SIAM ALA in Hong Kong!



Hong Kong Baptist University, 4-8 May 2018