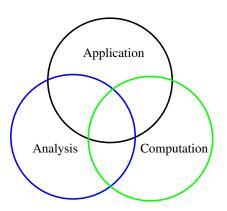
Model Reduction for Edge-Weighted Personalized PageRank

D. Bindel

11 Apr 2016

The Computational Science & Engineering Picture



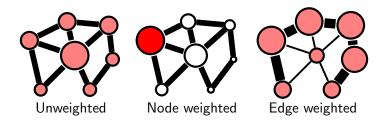
- MEMS
- Smart grids
- Networks

- Linear algebra
- Approximation theory
- Symmetry + **structure**
- HPC / cloud
- Simulators
- Solvers

Collaborators

Wenlei Xie LinkedIn
David Bindel Cornell
Johannes Gehrke Microsoft
Al Demers Cornell

PageRank Problem



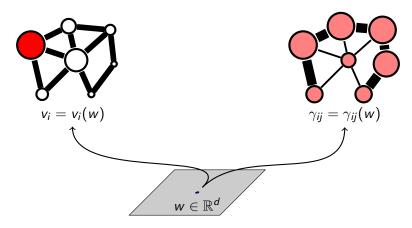
Goal: Find "important" vertices in a network

- Basic approach uses only topology
- Weights incorporate prior info about important nodes/edges

PageRank Model

- Random surfer model: $x^{(t+1)} = \alpha P x^{(t)} + (1 \alpha)v$ where $P = AD^{-1}$
- Stationary distribution: Mx = b where $M = (I \alpha P), b = (1 \alpha)v$

Edge Weight vs Node Weight Personalization



Introduce personalization parameters $w \in \mathbb{R}^d$ in two ways:

Node weights: $M \times (w) = b(w)$ Edge weights: $M(w) \times (w) = b$

D. Bindel Purdue 11 Apr 2016 6 / 33

Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

Some work on edge weight personalization

- ObjectRank/ScaleRank: personalize weights for different edge types
- But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization

 D. Bindel
 Purdue
 11 Apr 2016
 7 / 33

Edge Weight Parameterizations

Different ways to personalize \implies different algorithm options

① Linear: Take an edge of type *i* with probability αw_i

$$P(w) = \sum_{i=1}^{d} w_i P^{(i)}$$

② Scaled linear: Take an edge with probability \propto (linear) edge weight

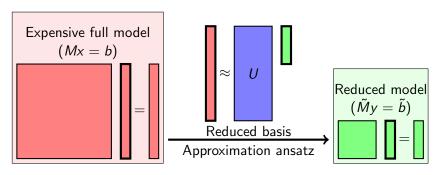
$$P(w) = A(w)D(w)^{-1}, \quad A(w) = \sum_{i=1}^{d} w_i A^{(i)}, \quad D(w) = \sum_{i=1}^{d} w_i D^{(i)},$$

Fully nonlinear: Both A and P depend nonlinearly on w

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

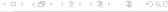
D. Bindel Purdue 11 Apr 2016 8 / 33

Model Reduction

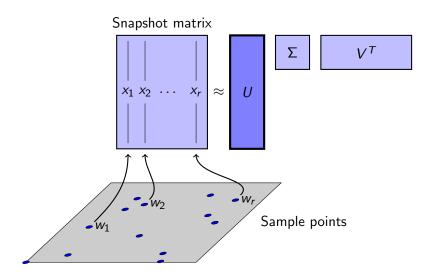


Model reduction procedure from physical simulation world:

- Offline: Construct reduced basis $U \in \mathbb{R}^{n \times k}$
- Offline: Choose $\geq k$ equations to pick approximation $\hat{x} = Uy$
- Online: Solve for y(w) given w and reconstruct \hat{x}



Reduced Basis Construction: SVD (aka POD/PCA/KL)



Choosing Good Spaces

What is the best possible approximation $\hat{x} = Uy$?

$$\min_{y} \|Uy - x(w)\|_2 \le \sigma_{k+1} \|x\|_2 + e_{\text{interp}}(w)$$

where

$$e_{\text{interp}}(w) = \left\| x(w) - \sum_{j=1}^{r} x(w_j)c_j(w) \right\|_2$$

is error in an interpolant.

- Pay attention where x has large derivatives!
- Also suggests sampling strategies (sparse grids, adaptive methods)

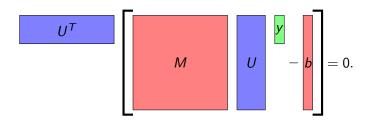
Approximation Ansatz

Want $r = MUy - b \approx 0$. Consider two approximation conditions:

Method	Ansatz	Properties
Bubnov-Galerkin	$U^T r = 0$	Good accuracy empirically Fast for $P(w)$ linear
DEIM (collocation)	$\min \ r_{\mathcal{I}}\ $	Fast even for nonlinear $P(w)$ Complex cost/accuracy tradeoff

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin – future work.

Bubnov-Galerkin Method



• Linear case: w_i = probability of transition with edge type i

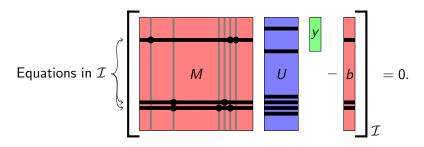
$$M(w) = I - \alpha \left(\sum_{i} w_{i} P^{(i)} \right), \quad \tilde{M}(w) = I - \alpha \left(\sum_{i} w_{i} \tilde{P}^{(i)} \right)$$

where we can precompute $\tilde{P}^{(i)} = U^T P^{(i)} U$

ullet Nonlinear: Cost to form $ilde{M}(w)$ comparable to cost of PageRank!

11 Apr 2016

Discrete Empirical Interpolation Method (DEIM)



- Ansatz: Minimize $||r_{\mathcal{I}}||$ for chosen indices \mathcal{I}
- Only need a few rows of M (and associated rows of U)
 - If given A(w), also need column sums for normalization.
- Difference from physics applications: high-degree nodes!

Error Behavior

Similar error analysis framework for both Galerkin and DEIM

$${\sf Consistency} + {\sf Stability} = {\sf Accuracy}$$

- Consistency: Does the subspace contain good approximants?
- Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

$$||x - Uy|| \le \min_{z} C||x - Uz||$$

D. Bindel

Purdue

Standard Quasi-Optimality Approach

• Define a solution projector:

 $\Pi x = \text{approximate solution when true solution is } x$

Note that $\Pi U = U$.

• The error projector $I-\Pi$ maps a true solution to error

$$e = x - \Pi x = (I - \Pi)x$$

Note that $(I - \Pi)U = 0$.

• If $e_{\min} = x - Uz$ is the smallest norm error in the space, then

$$e = (I - \Pi)x - (I - \Pi)Uz = (I - \Pi)e_{\min}$$

Therefore, a bound on $||I - \Pi|| \le 1 + ||\Pi||$ establishes quasi-optimality.

Quasi-Optimality: Galerkin and DEIM

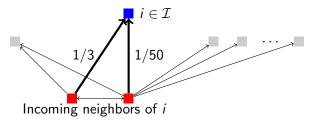
Galerkin:
$$\Pi = U\tilde{M}^{-1}W^TM$$
 $\tilde{M} \equiv W^TMU$

DEIM:
$$\Pi = U\tilde{M}^{\dagger}M_{\mathcal{I},:}$$
 $\tilde{M} \equiv M_{\mathcal{I},:}U$

- ullet Key to stability: $ilde{M}$ far from singular
- \bullet Suggests pivoting schemes for "good" ${\cal I}$ in DEIM
 - Also helps to explicitly enforce $\sum_i \hat{x}_i = 1$
- Can bound $\|\Pi\|$ offline for Galerkin + linear parameterization.

Interpolation Costs

Consider subgraph relevant to one interpolation equation:



- ullet Really care about weights of edges incident on ${\mathcal I}$
- Need more edges to normalize (unless A(w) linear)
- Cost to include $i \in \mathcal{I}$: $|\{j, k : a_{ij} \neq 0 \text{ and } a_{kj} \neq 0\}|$
- High in/out degree are expensive but informative

Interpolation Cost and Accuracy

- Key question: how to choose I to balance cost vs accuracy?
- ullet Want to pick ${\mathcal I}$ once, so look at rows of

$$Z = \begin{bmatrix} M(w_1)U & M(w_2)U & \ldots \end{bmatrix}$$

for sample parameters $w^{(i)}$.

- Pivoted QR-like greedy row selection with proxy measures for
 - Cost: Nonzeros in row (+ assoc columns if normalization required)
 - Accuracy: Residual when projecting row onto those previously selected
- Several heuristics for cost/accuracy tradeoff (see paper)

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

Online Costs

If $\ell=\#$ PR components needed, online costs are:

Form
$$\tilde{M}$$
 $O(dk^2)$ for B-G More complex for DEIM Factor \tilde{M} $O(k^3)$ Solve for y $O(k^2)$ Form Uv $O(k\ell)$

Online costs **do not** depend on graph size! (unless you want the whole PR vector)

Example Networks

DBLP (citation network)

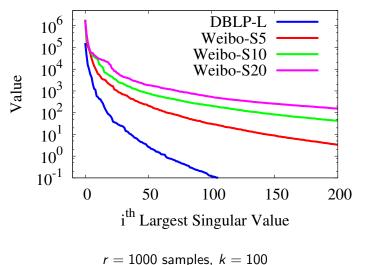
- 3.5M nodes / 18.5M edges
- Seven edge types seven parameters
- \bullet P(w) linear
- Competition: ScaleRank

Weibo (micro-blogging)

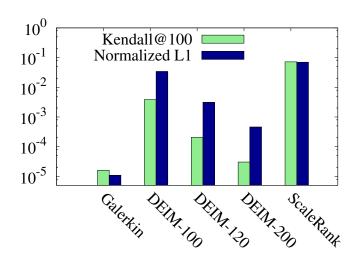
- 1.9M nodes / 50.7M edges
- Weight edges by topical similarity of posts
- Number of parameters = number of topics (5, 10, 20)

(Studied global and local PageRank – see paper for latter.)

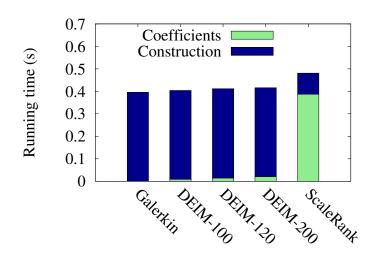
Singular Value Decay



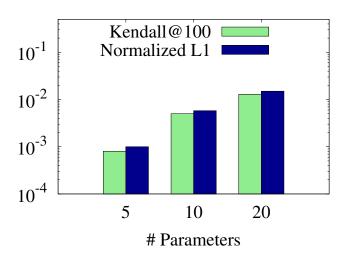
DBLP Accuracy



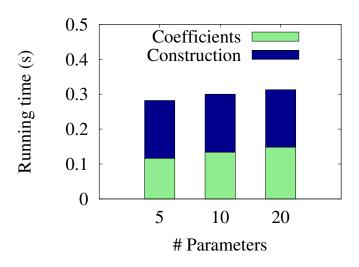
DBLP Running Times (All Nodes)



Weibo Accuracy



Weibo Running Times (All Nodes)



Application: Learning to Rank

Goal: Given $T = \{(i_q, j_q)\}_{q=1}^{|T|}$, find w that mostly ranks i_q over j_1 . (c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

$$\frac{\partial x}{\partial w_j} = M(w)^{-1} \left[\alpha \frac{\partial P(w)}{\partial w_j} x(w) \right]$$

Dominant cost: d+1 solves with the PageRank system M(w)

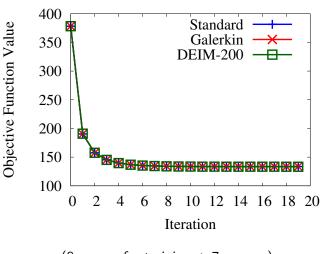
- One PageRank solve to evaluate a loss function
- One PageRank solve per parameter to evaluate gradients

Application: Learning to Rank

Goal: Given $T = \{(i_q, j_q)\}_{q=1}^{|T|}$, find w that mostly ranks i_q over j_1 . (c.f. Backstrom and Leskovec, WSDM 2011)

- Standard: Gradient descent on full problem
 - One PR computation for objective
 - One PR computation for each gradient component
 - Costs d + 1 PR computations per step
- With model reduction
 - Rephrase objective in reduced coordinate space
 - Use factorization to solve PR for objective
 - Re-use same factorization for gradient

DBLP Learning Task



(8 papers for training + 7 params)

The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per Iteration:

Method	Standard	Bubnov-Galerkin	DEIM-200
Time(sec)	159.3	0.002	0.033

Roads Not Taken

In the paper (but not the talk)

- Selecting interpolation equations for DEIM
- Localized PageRank experiments (Weibo and DBLP)
- Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...

Questions?

Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier Wenlei Xie, David Bindel, Johannes Gehrke, and Al Demers

KDD 2015, paper 117

Sponsors:

- NSF (IIS-0911036 and IIS-1012593)
- iAd Project from the National Research Council of Norway

Welcome to SIAM ALA in Hong Kong!

Hong Kong Baptist University, 4-8 May 2018