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PageRank Problem

Unweighted Node weighted Edge weighted

Goal: Find “important” vertices in a network

Basic approach uses only topology

Weights incorporate prior info about important nodes/edges
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PageRank Model

Unweighted Node weighted Edge weighted

Random surfer model: x (t+1) = αPx (t) + (1− α)v where P = AD−1

Stationary distribution: Mx = b where M = (I − αP), b = (1− α)v
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Edge Weight vs Node Weight Personalization

vi = vi (w)

w ∈ Rd

γij = γij(w)

Introduce personalization parameters w ∈ Rd in two ways:
Node weights: M x(w) = b(w)
Edge weights: M(w) x(w) = b
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Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

Topic-sensitive PageRank: fast methods based on linearity

Localized PageRank: fast methods based on sparsity

Some work on edge weight personalization

ObjectRank/ScaleRank: personalize weights for different edge types

But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization
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Edge Weight Parameterizations

Different ways to personalize =⇒ different algorithm options

1 Linear: Take an edge of type i with probability αwi

P(w) =
d∑

i=1

wiP
(i)

2 Scaled linear: Take an edge with probability ∝ (linear) edge weight

P(w) = A(w)D(w)−1, A(w) =
d∑

i=1

wiA
(i), D(w) =

d∑
i=1

wiD
(i),

3 Fully nonlinear: Both A and P depend nonlinearly on w

D. Bindel HKBU 21 Mar 2016 7 / 1



Model Reduction

=

Expensive full model
(Mx = b)

≈ U

Reduced basis =

Reduced model
(M̃y = b̃)

Approximation ansatz

Model reduction procedure from physical simulation world:

Offline: Construct reduced basis U ∈ Rn×k

Offline: Choose ≥ k equations to pick approximation x̂ = Uy

Online: Solve for y(w) given w and reconstruct x̂
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Reduced Basis Construction: SVD (aka POD/PCA/KL)

≈ U

Σ V T

Snapshot matrix

x1 x2 . . . xr

w2
wr

w1 Sample points
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Choosing Good Spaces

What is the best possible approximation x̂ = Uy?

min
y
‖Uy − x(w)‖2 ≤ σk+1‖x‖2 + einterp(w)

where

einterp(w) =

∥∥∥∥∥∥x(w)−
r∑

j=1

x(wj)cj(w)

∥∥∥∥∥∥
2

is error in an interpolant.

Pay attention where x has large derivatives!

Also suggests sampling strategies (sparse grids, adaptive methods)
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Approximation Ansatz

Want r = MUy − b ≈ 0. Consider two approximation conditions:

Method Ansatz Properties

Bubnov-Galerkin UT r = 0 Good accuracy empirically
Fast for P(w) linear

DEIM min ‖rI‖ Fast even for nonlinear P(w)
(collocation) Complex cost/accuracy tradeoff

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin – future work.
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Bubnov-Galerkin Method

UT

M U

y

− b = 0.

Linear case: wi = probability of transition with edge type i

M(w) = I − α

(∑
i

wiP
(i)

)
, M̃(w) = I − α

(∑
i

wi P̃
(i)

)

where we can precompute P̃(i) = UTP(i)U

Nonlinear: Cost to form M̃(w) comparable to cost of PageRank!
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Discrete Empirical Interpolation Method (DEIM)

M U

y

− b

I

= 0.Equations in I

Ansatz: Minimize ‖rI‖ for chosen indices I

Only need a few rows of M (and associated rows of U)

If given A(w), also need column sums for normalization.

Difference from physics applications: high-degree nodes!
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Error Behavior

Similar error analysis framework for both Galerkin and DEIM

Consistency + Stability = Accuracy

Consistency: Does the subspace contain good approximants?

Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

‖x − Uy‖ ≤ min
z

C‖x − Uz‖
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Standard Quasi-Optimality Approach

Define a solution projector:

Πx = approximate solution when true solution is x

Note that ΠU = U.

The error projector I − Π maps a true solution to error

e = x − Πx = (I − Π)x

Note that (I − Π)U = 0.

If emin = x − Uz is the smallest norm error in the space, then

e = (I − Π)x − (I − Π)Uz = (I − Π)emin

Therefore, a bound on ‖I −Π‖ ≤ 1 + ‖Π‖ establishes quasi-optimality.
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Quasi-Optimality: Galerkin and DEIM

Galerkin : Π = UM̃−1W TM M̃ ≡W TMU

DEIM : Π = UM̃†MI,: M̃ ≡ MI,:U

Key to stability: M̃ far from singular

Suggests pivoting schemes for “good” I in DEIM

Also helps to explicitly enforce
∑

i x̂i = 1

Can bound ‖Π‖ offline for Galerkin + linear parameterization.
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Interpolation Costs

Consider subgraph relevant to one interpolation equation:

i ∈ I

Incoming neighbors of i

. . .
1/3 1/50

Really care about weights of edges incident on I

Need more edges to normalize (unless A(w) linear)

Cost to include i ∈ I: |{j , k : aij 6= 0 and akj 6= 0}|

High in/out degree are expensive but informative
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Interpolation Cost and Accuracy

Key question: how to choose I to balance cost vs accuracy?

Want to pick I once, so look at rows of

Z =
[
M(w1)U M(w2)U . . .

]
for sample parameters w (i).

Pivoted QR-like greedy row selection with proxy measures for

Cost: Nonzeros in row (+ assoc columns if normalization required)

Accuracy: Residual when projecting row onto those previously selected

Several heuristics for cost/accuracy tradeoff (see paper)
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Online Costs

If ` = # PR components needed, online costs are:

Form M̃ O(dk2) for B-G
More complex for DEIM

Factor M̃ O(k3)
Solve for y O(k2)
Form Uy O(k`)

Online costs do not depend on graph size!
(unless you want the whole PR vector)
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Example Networks

DBLP (citation network)
3.5M nodes / 18.5M edges
Seven edge types =⇒
seven parameters
P(w) linear
Competition: ScaleRank

Weibo (micro-blogging)
1.9M nodes / 50.7M edges
Weight edges by topical
similarity of posts
Number of parameters =
number of topics (5, 10, 20)

(Studied global and local PageRank – see paper for latter.)
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Singular Value Decay

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0  50  100  150  200

V
al

u
e

i
th

 Largest Singular Value

DBLP-L
Weibo-S5

Weibo-S10
Weibo-S20

r = 1000 samples, k = 100

D. Bindel HKBU 21 Mar 2016 21 / 1



DBLP Accuracy

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
alerk

in

D
E
IM

-1
0
0

D
E
IM

-1
2
0

D
E
IM

-2
0
0

S
caleR

an
k

Kendall@100

Normalized L1

D. Bindel HKBU 21 Mar 2016 22 / 1



DBLP Running Times (All Nodes)
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Weibo Accuracy
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Weibo Running Times (All Nodes)
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Application: Learning to Rank

Goal: Given T = {(iq, jq)}|T |q=1, find w that mostly ranks iq over j1.
(c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

∂x

∂wj
= M(w)−1

[
α
∂P(w)

∂wj
x(w)

]
Dominant cost: d + 1 solves with the PageRank system M(w)

One PageRank solve to evaluate a loss function

One PageRank solve per parameter to evaluate gradients
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Application: Learning to Rank

Goal: Given T = {(iq, jq)}|T |q=1, find w that mostly ranks iq over j1.
(c.f. Backstrom and Leskovec, WSDM 2011)

Standard: Gradient descent on full problem

One PR computation for objective

One PR computation for each gradient component

Costs d + 1 PR computations per step

With model reduction

Rephrase objective in reduced coordinate space

Use factorization to solve PR for objective

Re-use same factorization for gradient
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DBLP Learning Task
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The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per Iteration:

Method Standard Bubnov-Galerkin DEIM-200

Time(sec) 159.3 0.002 0.033
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Roads Not Taken

In the paper (but not the talk)

Selecting interpolation equations for DEIM

Localized PageRank experiments (Weibo and DBLP)

Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...
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