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PageRank Problem
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Goal: Find “important” vertices in a network
@ Basic approach uses only topology

@ Weights incorporate prior info about important nodes/edges
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PageRank Model

050 17

Unweighted Node weighted Edge weighted

o Random surfer model: x(**1) = aPx(*) 4+ (1 — a)v where P = AD1

e Stationary distribution: Mx = b where M = (I —aP),b=(1—a)v
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Edge Weight vs Node Weight Personalization
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Introduce personalization parameters w € R in two ways:
Node weights: M x(w) = b(w)
Edge weights:  M(w) x(w) = b
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-
Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied
@ Topic-sensitive PageRank: fast methods based on linearity
@ Localized PageRank: fast methods based on sparsity
Some work on edge weight personalization
@ ObjectRank/ScaleRank: personalize weights for different edge types
@ But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization
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Edge Weight Parameterizations

Different ways to personalize = different algorithm options

@ Linear: Take an edge of type / with probability aw;
d .
P(w) = Z w; )
i=1

@ Scaled linear: Take an edge with probability o (linear) edge weight

d d
P(w) = Aw)D(w)™*, Aw) =Y wAD, D(w)=> wD",
i=1

© Fully nonlinear: Both A and P depend nonlinearly on w
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Model Reduction

Expensive full model
(Mx = b)

Redu~ced deeI
(My = b)

ﬁeduced basis . _
Approximation ansatz f

Model reduction procedure from physical simulation world:

e Offline: Construct reduced basis U € Rk

o Offline: Choose > k equations to pick approximation X = Uy

@ Online: Solve for y(w) given w and reconstruct X
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|
Reduced Basis Construction: SVD (aka POD/PCA/KL)

Snapshot matrix
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Choosing Good Spaces

What is the best possible approximation X = Uy?
min Uy —x(w)ll2 < ous1lix[l2 + mnterp(w)

where

einterp(W) = ||x(w) — ZX(WJ)CJ(W)
2
is error in an interpolant.

@ Pay attention where x has large derivatives!

@ Also suggests sampling strategies (sparse grids, adaptive methods)
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Approximation Ansatz

Want r = MUy — b ~ 0. Consider two approximation conditions:

Method Ansatz Properties

Bubnov-Galerkin - UTr =0 Good accuracy empirically
Fast for P(w) linear

DEIM min ||rz||  Fast even for nonlinear P(w)
(collocation) Complex cost/accuracy tradeoff

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin — future work.

D. Bindel Stanford 22 Oct 2015 1/1



N
Bubnov-Galerkin Method

|

@ Linear case: w; = probability of transition with edge type /

where we can precompute PO = yTpiy

M(w) =1 — (Z W,'P(i)) . Mw)=1I-a (Z w,-/5<")>
@ Nonlinear: Cost to form M(w) comparable to cost of PageRank!
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Discrete Empirical Interpolation Method (DEIM)

Equations in Z — =0.
- - A

@ Ansatz: Minimize ||rz|| for chosen indices Z

@ Only need a few rows of M (and associated rows of U)

o If given A(w), also need column sums for normalization.

o Difference from physics applications: high-degree nodes!
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Error Behavior

Similar error analysis framework for both Galerkin and DEIM

Consistency + Stability = Accuracy

@ Consistency: Does the subspace contain good approximants?

@ Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

Ix — Uyl| < min Clix — U]
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Standard Quasi-Optimality Approach

o Define a solution projector:
Mx = approximate solution when true solution is x

Note that MU = U.

@ The error projector | — I'l maps a true solution to error
e=x—INx=(—-M)x

Note that (/ —M)U = 0.

@ If emin = x — Uz is the smallest norm error in the space, then
e=(—Mx— (I —MUz = (I —M)emin
Therefore, a bound on ||/ — || < 14 ||MN|| establishes quasi-optimality.
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Quasi-Optimality: Galerkin and DEIM

Galerkin: NM=UM*W™Mm
DEIM: M= UMMz,

NS
T
53
< =<

<

o Key to stability: M far from singular
@ Suggests pivoting schemes for “good” Z in DEIM
o Also helps to explicitly enforce >, % =1

e Can bound ||[|| offline for Galerkin + linear parameterization.
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Interpolation Costs

Consider subgraph relevant to one interpolation equation:

| WESWA

Incoming neighbors of i

Really care about weights of edges incident on 7
@ Need more edges to normalize (unless A(w) linear)

Cost to include i € Z: |{j, k : ajj # 0 and ay; # 0}|

High in/out degree are expensive but informative
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Interpolation Cost and Accuracy

o Key question: how to choose Z to balance cost vs accuracy?

@ Want to pick Z once, so look at rows of
Z=[M(w1)U M(wp)U ..]

for sample parameters w(/),
@ Pivoted QR-like greedy row selection with proxy measures for
o Cost: Nonzeros in row (4 assoc columns if normalization required)

o Accuracy: Residual when projecting row onto those previously selected

@ Several heuristics for cost/accuracy tradeoff (see paper)
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Online Costs

If £ = # PR components needed, online costs are:

Form M O(dk?) for B-G
More complex for DEIM
Factor M O(k3)
Solve for y  O(k?)
Form Uy  O(k¢)

Online costs do not depend on graph size!
(unless you want the whole PR vector)
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Example Networks

DBLP (citation network) Weibo (micro-blogging)
@ 3.5M nodes / 18.5M edges @ 1.9M nodes / 50.7M edges
@ Seven edge types = @ Weight edges by topical
seven parameters similarity of posts
e P(w) linear @ Number of parameters =
e Competition: ScaleRank number of topics (5, 10, 20)

(Studied global and local PageRank — see paper for latter.)
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Singular Value Decay
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r = 1000 samples, k = 100
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DBLP Accuracy
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DBLP Running Times (All Nodes)
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Weibo Accuracy
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|
Weibo Running Times (All Nodes)
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Application: Learning to Rank

Goal: Given T = {(iq,jq)}lqgl, find w that mostly ranks ig over jj.
(c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

OP(w)
Iw;

o M(w)~1 [a

x(w)|

Dominant cost: d + 1 solves with the PageRank system M(w)
@ One PageRank solve to evaluate a loss function

@ One PageRank solve per parameter to evaluate gradients
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Application: Learning to Rank

Goal: Given T = {(iq,jq)}LTzll, find w that mostly ranks iy over j;.

(c.f. Backstrom and Leskovec, WSDM 2011)

@ Standard: Gradient descent on full problem
e One PR computation for objective
e One PR computation for each gradient component
o Costs d + 1 PR computations per step

@ With model reduction
o Rephrase objective in reduced coordinate space

o Use factorization to solve PR for objective

o Re-use same factorization for gradient
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DBLP Learning Task
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(8 papers for training + 7 params)
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The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per lteration:

Method

Standard

Bubnov-Galerkin

DEIM-200

Time(sec)

159.3

0.002

0.033
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Roads Not Taken

In the paper (but not the talk)
@ Selecting interpolation equations for DEIM
o Localized PageRank experiments (Weibo and DBLP)

@ Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...
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Questions?
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