Model Reduction for Edge-Weighted Personalized PageRank

D. Bindel

21 Oct 2015

D. Bindel

★ ∃ >

21 Oct 2015

1 / 1

PageRank Problem

Goal: Find "important" vertices in a network

- Basic approach uses only topology
- Weights incorporate prior info about important nodes/edges

< ∃ > <

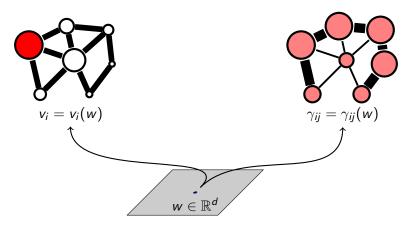
PageRank Model

- Random surfer model: $x^{(t+1)} = \alpha P x^{(t)} + (1-\alpha)v$ where $P = AD^{-1}$
- Stationary distribution: Mx = b where $M = (I \alpha P), b = (1 \alpha)v$

▲ ■
■
•
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

(日) (周) (三) (三)

Edge Weight vs Node Weight Personalization



Introduce *personalization parameters* $w \in \mathbb{R}^d$ in two ways: Node weights: $M \times (w) = b(w)$ Edge weights: $M(w) \times (w) = b$

(日) (同) (三) (三)

Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

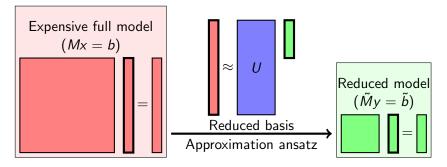
Some work on edge weight personalization

- ObjectRank/ScaleRank: personalize weights for different edge types
- But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization

(人間) トイヨト イヨト

Model Reduction

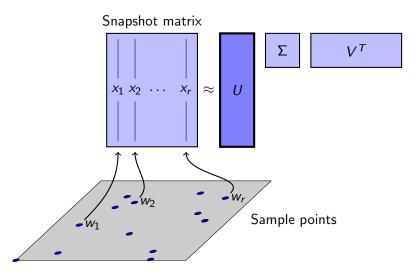


Model reduction procedure from physical simulation world:

- Offline: Construct reduced basis $U \in \mathbb{R}^{n \times k}$
- Offline: Choose $\geq k$ equations to pick approximation $\hat{x} = Uy$
- Online: Solve for y(w) given w and reconstruct \hat{x}

イロト イヨト イヨト イヨト

Reduced Basis Construction: SVD (aka POD/PCA/KL)



→ ∃ →

Choosing Good Spaces

What is the best possible approximation $\hat{x} = Uy$?

$$\min_{\mathcal{Y}} \|Uy - x(w)\|_2 \leq \sigma_{k+1} \|x\|_2 + e_{\mathrm{interp}}(w)$$

where

$$e_{\mathrm{interp}}(w) = \left\| x(w) - \sum_{j=1}^{r} x(w_j) c_j(w) \right\|_2$$

is error in an interpolant.

- Pay attention where x has large derivatives!
- Also suggests sampling strategies (sparse grids, adaptive methods)

(本間) (本語) (本語)

Approximation Ansatz

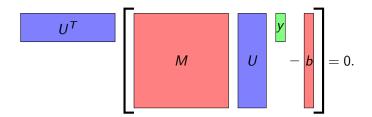
Want $r = MUy - b \approx 0$. Consider two approximation conditions:

Method	Ansatz	Properties
Bubnov-Galerkin	$U^T r = 0$	Good accuracy empirically Fast for $P(w)$ linear
DEIM	$\min \ \mathbf{r}_{\mathcal{I}}\ $	Fast even for nonlinear <i>P(w)</i> Complex cost/accuracy tradeoff

Petrov-Galerkin a bit more accurate than Bubnov-Galerkin – future work.

(日) (四) (王) (王) (王)

Bubnov-Galerkin Method



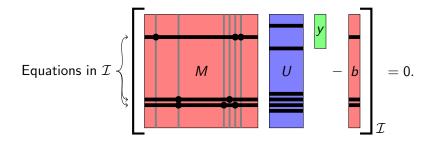
• Linear case: w_i = probability of transition with edge type i

$$M(w) = I - \alpha \left(\sum_{i} w_{i} P^{(i)} \right), \quad \tilde{M}(w) = I - \alpha \left(\sum_{i} w_{i} \tilde{P}^{(i)} \right)$$

where we can precompute $\tilde{P}^{(i)} = U^T P^{(i)} U$

• Nonlinear: Cost to form $\tilde{M}(w)$ comparable to cost of PageRank!

Discrete Empirical Interpolation Method (DEIM)



- Ansatz: Minimize $||r_{\mathcal{I}}||$ for chosen indices \mathcal{I}
- Only need a few rows of M (and associated rows of U)
- Difference from physics applications: high-degree nodes!

Error Behavior

Similar error analysis framework for both Galerkin and DEIM

Consistency + Stability = Accuracy

- Consistency: Does the subspace contain good approximants?
- Stability: Is the approximation subproblem far from singular?

Characterize stability by a quasi-optimality condition

$$\|x - Uy\| \le \min_{z} C\|x - Uz\|$$

Quasi-optimality (Galerkin)

Define
$$\tilde{M} = W^T M U$$
 and $\Pi = U \tilde{M}^{-1} W^T M$:

$$x - Uy = (I - \Pi)x \qquad \qquad 0 = (I - \Pi)U$$

So we have the Galerkin error relation

$$x - Uy = (I - \Pi)(x - Uz)$$

for any candidate solution Uz. Take norms and minimize over z:

$$\|e\| \leq (1+\kappa_{\mathcal{G}})\|e_{\min}\|$$

where

$$\kappa_{\boldsymbol{G}} \equiv \|\boldsymbol{U}\| \|\tilde{\boldsymbol{M}}^{-1}\| \|\boldsymbol{W}^{\boldsymbol{T}}\boldsymbol{M}\|.$$

Can actually bound offline for linear parameterization.

D. Bindel

Quasi-optimality (DEIM)

DEIM error relation derived similarly,

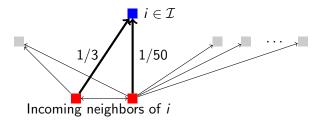
$$e = [I - \Pi] e_* = \left[I - U(M_{\mathcal{I},:}U)^{\dagger}M_{\mathcal{I},:}\right] e_*.$$

- Keep $M_{\mathcal{I},:}U$ far from singular \implies keep DEIM stable
 - Also helps to explicitly enforce $\sum_i \hat{x}_i = 1$
- \bullet Suggests pivoting schemes to choose a "good" ${\cal I}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Interpolation Costs

Consider subgraph relevant to one interpolation equation:



- Really care about weights of edges incident on ${\cal I}$
 - Need more edges to normalize (unless A(w) is linear)
- High in/out degree are expensive but informative
- Key question: how to choose \mathcal{I} to balance cost vs accuracy?

Interpolation Accuracy

- Key: keep $M_{\mathcal{I},:}$ far from singular.
- \bullet Want to pick ${\cal I}$ once, so look at rows of

$$Z = \begin{bmatrix} M(w_1)U & M(w_2)U & \ldots \end{bmatrix}$$

for sample parameters $w^{(i)}$.

- Pivoted QR-like greedy row selection with proxy measures for
 - **Cost**: Nonzeros in row (+ assoc columns if normalization required)
 - Accuracy: Residual when projecting row onto those previously selected
- Several heuristics for cost/accuracy tradeoff (see paper)

(本間) (本語) (本語)

Online Costs

If $\ell=\#$ PR components needed, online costs are:

Form \tilde{M} $O(dk^2)$ for B-G
More complex for DEIMFactor \tilde{M} $O(k^3)$ Solve for y $O(k^2)$ Form Uy $O(k\ell)$

Online costs **do not** depend on graph size! (unless you want the whole PR vector)

(日) (周) (三) (三)

Example Networks

DBLP (citation network)

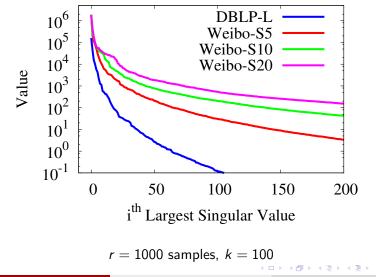
- 3.5M nodes / 18.5M edges
- Seven edge types ⇒ seven parameters
- P(w) linear
- Competition: ScaleRank

Weibo (micro-blogging)

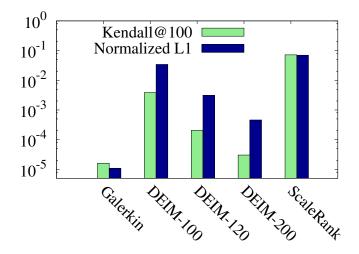
- $\bullet~1.9M$ nodes / 50.7M edges
- Weight edges by topical similarity of posts
- Number of parameters = number of topics (5, 10, 20)

(Studied global and local PageRank – see paper for latter.)

Singular Value Decay



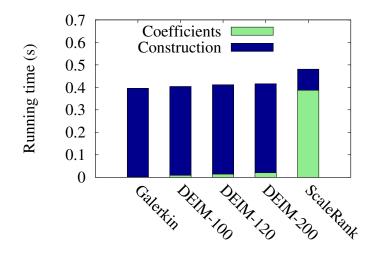
DBLP Accuracy



21 Oct 2015 20 / 1

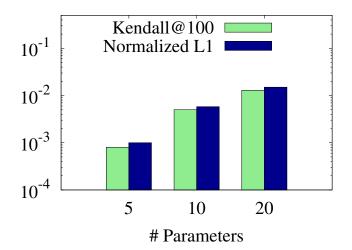
▲ 同 ▶ → 三 ▶

DBLP Running Times (All Nodes)



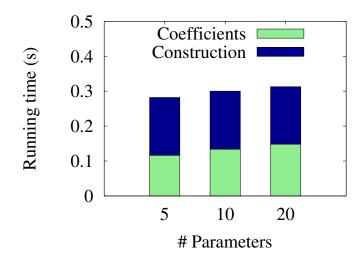
-∢ ∃ ▶

Weibo Accuracy



21 Oct 2015 22 / 1

Weibo Running Times (All Nodes)



21 Oct 2015 23 / 1

▲ □ ► ▲ □ ► ▲

Application: Learning to Rank

Goal: Given $T = \{(i_q, j_q)\}_{q=1}^{|T|}$, find w that mostly ranks i_q over j_1 . (c.f. Backstrom and Leskovec, WSDM 2011)

Standard idea: Gradient descent

$$\frac{\partial x}{\partial w_j} = M(w)^{-1} \left[\alpha \frac{\partial P(w)}{\partial w_j} x(w) \right]$$

Dominant cost: d + 1 solves with the PageRank system M(w)

- One PageRank solve to evaluate a loss function
- One PageRank solve per parameter to evaluate gradients

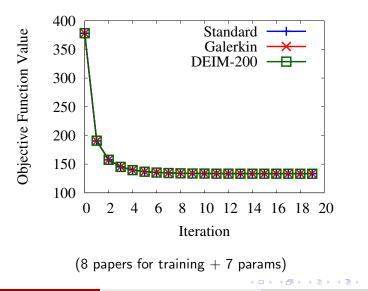
イロト 不得下 イヨト イヨト 二日

Application: Learning to Rank

Goal: Given $T = \{(i_q, j_q)\}_{q=1}^{|T|}$, find w that mostly ranks i_q over j_1 . (c.f. Backstrom and Leskovec, WSDM 2011)

- Standard: Gradient descent on full problem
 - One PR computation for objective
 - One PR computation for each gradient component
 - Costs d + 1 PR computations per step
- With model reduction
 - Rephrase objective in reduced coordinate space
 - Use factorization to solve PR for objective
 - Re-use same factorization for gradient

DBLP Learning Task



▶ ▲ ≣ ▶ ≣ ∽ Q C 21 Oct 2015 26 / 1

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per Iteration:

Method	Standard	Bubnov-Galerkin	DEIM-200
Time(sec)	159.3	0.002	0.033

イロト イ団ト イヨト イヨト

In the paper (but not the talk)

- Selecting interpolation equations for DEIM
- Localized PageRank experiments (Weibo and DBLP)
- Comparison to BCA for localized PageRank

Room for future work! Analysis, applications, systems, ...

- 4 同 ト - 4 三 ト - 4 三

Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier Wenlei Xie, David Bindel, Johannes Gehrke, and Al Demers

KDD 2015, paper 117

Sponsors:

- NSF (IIS-0911036 and IIS-1012593)
- iAd Project from the National Research Council of Norway

→ 3 → 4 3