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The PageRank Model

Surfer follows random link (probability α) or teleports to random node:

x (t+1) = αPx (t) + (1− α)v ,

P = AD−1 is a (weighted) adjacency matrix with columns normalized.
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PageRank: Unweighted case
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PageRank: Node Weighted

David Bindel SCAN Mar 2, 2015 4 / 29



PageRank: Edge Weighted
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The PageRank Model

Surfer follows random link (probability α) or teleports to random node:

x (t+1) = αPx (t) + (1− α)v ,

P = AD−1 is a (weighted) adjacency matrix with columns normalized.

Stationary equations:

Mx = b, M = I − αP, b = (1− α)v

PageRank iteration is a standard solver for this system.
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Personalized PageRank

Introduce personalization parameters w ∈ Rd , consider two cases:

Node-weight: M x(w) = b(w)
Edge-weight: M(w) x(w) = b

Examples:

b(w) = 1− αVw , columns of V are authorities for reference topics

Different edge types (authorship, citation, etc); wi is weight of type i

Nodes are writers, edge weights for topical similarity;
w are weights in a weighted cosine similarity measure

Goal: Fast computation for varying w (different users, queries)
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Edge-Weight vs Node-Weight

Node-weight personalization is well-studied

Topic-sensitive PageRank: fast methods based on linearity

Localized PageRank: fast methods based on sparsity

Little work on fast methods for edge-weight personalization!
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Idea: Model Reduction

Replace large, expensive model by cheaper “reduced-order” model

Common idea in physical simulations

Use the model equations (vs black-box regression)

Great for control, optimization, etc (many evaluations)

Expensive pre-processing is OK
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Model Reduction Framework

Observation: x(w) approximately in a low-dimensional space:

x(w) ≈ Uy(w), U ∈ Rn×k , k � n

Can find U by PCA/POD/KL/SVD on a “snapshot” matrix of samples

X =
[
x(w1) x(w2) . . . x(wr )

]
Can estimate quality of best approximation in the space

A priori by interpolation theory (given bounds on derivatives)

A posteriori from truncated singular values

Question: How to extract the best (or near-best) y(w)?
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Background: Interpolation Connection

Why not go with interpolant

x̂(w) =
r∑

j=1

x(wj)cj(w)

where cj(w) is some Lagrange basis for an interpolation space?

Online phase is cheap

Accuracy depends on Lagrange basis (Lebesgue constants)

Have observed better accuracy with methods based on equations
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Galerkin Approach

Goal: r = MUy − b ≈ 0 or Uy ≈ x
Galerkin ansatz: W T (MUy − b) = 0
Bubnov-Galerkin: W = U

Works great for linear parameterization

M(w) = I − αP(w) = I − α

(∑
i

wiP
(i)

)
.

Model: pick edge type i with probability wi , then pick edge of that type.

B-G system: M̃(w)y(w) = UTb, where

M̃(w) = UTM(w)U = I − α

(∑
i

wi P̃
(i)

)
, P̃(i) = UTP(i)U.
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Error estimates

Key concept: quasi-optimality

‖x − x̂‖ ≤ C min
z
‖x − Uz‖

where C can be controlled in some way.

Accuracy = Good space (consistency) + Quasi-optimality (stability)
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Quasi-optimality

Define M̃ = W TMU and Π = UM̃−1W TM:

x − Uy = (I − Π)x 0 = (I − Π)U

So we have the Galerkin error relation

x − Uy = (I − Π)(x − Uz)

for any candidate solution Uz . Take norms and minimize over z :

‖e‖ ≤ (1 + κG )‖emin‖

where
κG ≡ ‖U‖‖M̃−1‖‖W TM‖.
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Quasi-optimality

If W TU normalized so W TU = I , then for linear parameterization

‖M̃−1‖ ≤ 1

1− αmaxj ‖P̃(j)‖

For 1-norm, have ‖M‖1 ≤ 1 + α, so if ‖P̃(j)‖1 < α−1 for j = 1, . . . , d ,

κG ≤
(1 + α)‖U‖1‖W ‖∞
1− αmaxj ‖P̃(j)‖1

.

That is, we can bound the quasi-optimality constant offline.
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Galerkin Shortcomings

For nonlinear parameterizations, still need

M̃(w) = UTM(w)U.

Without a trick, have to

Form all of M(w)

Do k matrix-vector products with M(w)

Comparable to cost of standard PageRank algorithm!
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DEIM Approach

DEIM = Discrete Empirical Interpolation Method

Goal: r = MUy − b ≈ 0 or Uy ≈ x
DEIM ansatz: minimize ‖rI‖ for chosen indices I, |I| ≥ k.

Only requires a few rows/columns of M(w)! But how to choose I?

More expensive if we choose high-degree nodes
(Much more an issue in social networks than physical problems)

What about accuracy? Choose “important” (high-PR) nodes?
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Cost of forming the system

Typical case: P = AD−1, given A(w). Think of partitioning:A11 A12 0
A21 A22 A23

0 A32 A33


If we enforce the first block equation, we need the colored blocksA11 A12 0

A21 A22 A23

0 A32 A33


where blue = used in DEIM equations, red = needed for normalization.

If A =
∑

j wjA
(j), no need to compute entries for normalization.
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Cost of forming the system

Graph theoretic terms: if A(w) is linear, cost to form MI,:U is∑
v∈I

inDegree(v)

Issue: Social networks have some very high-degree nodes!
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Quasi-optimality

Analysis for DEIM ≈ analysis for Galerkin; in one-norm, have

κDEIM ≤ (1 + α)‖U‖1‖(MI,:(w)U)†‖1

Key: well-posedness of the projected least squares problem.

Pro: Estimating ‖(MI,:(w)U)†‖1 is cheap given MI,:(w)U = QR.

Con: A priori bounds are hard
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Choosing the interpolation set

Key: keep MI,: far from singular.

If |I| = k , this is a subset selection over rows of MU.

Have standard techniques (e.g. pivoted QR)

Want to pick I once, so look at rows of

Z =
[
M(w (1))U M(w (2))U . . .

]
for sample parameters w (i).
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Application: Learning to Rank

Goal: Given T = {(iq, jq)}|T |q=1, find w that mostly ranks iq over j1.

Standard: Gradient descent on full problem

One PR computation for objective

One PR computation for each gradient component

Costs d + 1 PR computations per step

With model reduction

Rephrase objective in reduced coordinate space

Use factorization to solve PR for objective

Re-use same factorization for gradient
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Test case

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Goal: Learning to rank (8 papers for training)

Consider linear parameterization (B-G and DEIM both apply)

Compare to ScaleRank (more restrictive than we are, but applies here)

This is a good case – see paper for some others

David Bindel SCAN Mar 2, 2015 23 / 29



DBLP singular values
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DBLP accuracy
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DBLP learning task

 100

 150

 200

 250

 300

 350

 400

 0  2  4  6  8  10  12  14  16  18  20

O
b
je

ct
iv

e 
F

u
n
ct

io
n
 V

al
u
e

Iteration

Standard
Galerkin

DEIM-200

David Bindel SCAN Mar 2, 2015 26 / 29



DBLP running times (PR at all nodes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

G
alerkin

D
EIM

-100

D
EIM

-120

D
EIM

-200

ScaleR
ank

R
u
n
n
in

g
 t

im
e 

(s
)

Coefficients
Construction

David Bindel SCAN Mar 2, 2015 27 / 29



The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per Iteration:

Method Standard Bubnov-Galerkin DEIM-200

Time(sec) 159.3 0.002 0.033

Improvement of nearly four or five orders of magnitude.
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For more

Edge-Weighted Personalized PageRank:
Breaking a Decade-Old Performance Barrier

Wenlei Xie, David Bindel, Johannes Gehrke, and Al Demers

Submitted to KDD
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