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-
The PageRank Model

Surfer follows random link (probability «) or teleports to random node:
XU = o Px() + (1 — a)v,

P = AD™ ! is a (weighted) adjacency matrix with columns normalized.
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-
PageRank: Unweighted case
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PageRank: Node Weighted
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PageRank: Edge Weighted
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-
The PageRank Model

Surfer follows random link (probability «) or teleports to random node:
xE) = oPx() 4 (1 — a)v,

P = AD~ 1 is a (weighted) adjacency matrix with columns normalized.

Stationary equations:
Mx=b, M=Il—-aP, b=(1-a)v

PageRank iteration is a standard solver for this system.
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Personalized PageRank

Introduce personalization parameters w € RY, consider two cases:
Node-weight: M x(w) = b(w)
Edge-weight:  M(w) x(w) = b
Examples:
e b(w) =1— aVw, columns of V are authorities for reference topics
e Different edge types (authorship, citation, etc); w; is weight of type i

@ Nodes are writers, edge weights for topical similarity;
w are weights in a weighted cosine similarity measure

Goal: Fast computation for varying w (different users, queries)
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Edge-Weight vs Node-Weight

Node-weight personalization is well-studied
o Topic-sensitive PageRank: fast methods based on linearity
o Localized PageRank: fast methods based on sparsity

Little work on fast methods for edge-weight personalization!
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N
Idea: Model Reduction

Replace large, expensive model by cheaper “reduced-order” model

@ Common idea in physical simulations

Use the model equations (vs black-box regression)

Great for control, optimization, etc (many evaluations)

@ Expensive pre-processing is OK
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Model Reduction Framework

Observation: x(w) approximately in a low-dimensional space:
x(w) = Uy(w), UeR™k k<n
Can find U by PCA/POD/KL/SVD on a “snapshot” matrix of samples
X = [x(m) x(w2) ... x(w)]
Can estimate quality of best approximation in the space
@ A priori by interpolation theory (given bounds on derivatives)

@ A posteriori from truncated singular values

Question: How to extract the best (or near-best) y(w)?
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Background: Interpolation Connection

Why not go with interpolant

E, x(wj)cj(w

where ¢j(w) is some Lagrange basis for an interpolation space?
@ Online phase is cheap
@ Accuracy depends on Lagrange basis (Lebesgue constants)

@ Have observed better accuracy with methods based on equations
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-
Galerkin Approach

Goal: r=MUy —b=0or Uy = x
Galerkin ansatzz ~ W T (MUy — b) =0
Bubnov-Galerkin: W = U

Works great for linear parameterization

M(w) =1 —aP(w —I—a<ZW, )

Model: pick edge type i with probability w;, then pick edge of that type.
B-G system: M(w)y(w) = UT b, where

M(w) = UT M(w) —/—a(ZWpU) PO = yTpiy.
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Error estimates

Key concept: quasi-optimality
Ix — %]| < Cmin||x — Uz||
z

where C can be controlled in some way.

Accuracy = Good space (consistency) + Quasi-optimality (stability)
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]
Quasi-optimality

Define M = WTMU and N = UMW M:
x— Uy =(I—-MN)x 0=(-MU
So we have the Galerkin error relation
x—Uy =(I-M)(x— Uz)
for any candidate solution Uz. Take norms and minimize over z:
lell < (1 + )l eminl

where ~
ke = |[U[[[IM~ | WT M]|.
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]
Quasi-optimality

If WT U normalized so WT U = I, then for linear parameterization

1
1 — armax; ||I5(J)H

1M <

For 1-norm, have |M|j; <1+ a, soif [Py <atforj=1,...,d,

L @)U W
1 —amax; HPU)||1

That is, we can bound the quasi-optimality constant offline.
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Galerkin Shortcomings

For nonlinear parameterizations, still need
M(w) = UTM(w)U.
Without a trick, have to

e Form all of M(w)

@ Do k matrix-vector products with M(w)

Comparable to cost of standard PageRank algorithm!
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DEIM Approach

DEIM = Discrete Empirical Interpolation Method
Goal: r=MUy —b=a0or Uy = x
DEIM ansatz:  minimize ||rz|| for chosen indices Z, |Z| > k.

Only requires a few rows/columns of M(w)! But how to choose Z7

@ More expensive if we choose high-degree nodes
(Much more an issue in social networks than physical problems)

e What about accuracy? Choose “important” (high-PR) nodes?
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Cost of forming the system

Typical case: P = AD™1, given A(w). Think of partitioning:

Ain A O
Axi Axn A
0 Az Az

If we enforce the first block equation, we need the colored blocks

Air A 0
Axi A Ax
0 A Az

where blue = used in DEIM equations, red = needed for normalization.

If A= Zj WJ-AU), no need to compute entries for normalization.
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Cost of forming the system

Graph theoretic terms: if A(w) is linear, cost to form Mz .U is

Z inDegree(v)

veL

Issue: Social networks have some very high-degree nodes!
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]
Quasi-optimality

Analysis for DEIM = analysis for Galerkin; in one-norm, have
ko < (1+ )| Ul1]|(Mz,.(w)U) |y

Key: well-posedness of the projected least squares problem.
e Pro: Estimating ||(Mz..(w)U)||1 is cheap given Mz.(w)U = QR.

@ Con: A priori bounds are hard
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Choosing the interpolation set

o Key: keep Mz . far from singular.
e If |Z| = k, this is a subset selection over rows of MU.
e Have standard techniques (e.g. pivoted QR)

@ Want to pick Z once, so look at rows of
Z=[MwOU MwD)Uu ..]

for sample parameters w(?).
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Application: Learning to Rank

Goal: Given T = {(ig,jg)}, 1. find w that mostly ranks i over ji.
@ Standard: Gradient descent on full problem
e One PR computation for objective
e One PR computation for each gradient component
o Costs d + 1 PR computations per step
o With model reduction
o Rephrase objective in reduced coordinate space

e Use factorization to solve PR for objective

e Re-use same factorization for gradient
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Test case

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params
@ Goal: Learning to rank (8 papers for training)
e Consider linear parameterization (B-G and DEIM both apply)
o Compare to ScaleRank (more restrictive than we are, but applies here)

@ This is a good case — see paper for some others
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DBLP singular values
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DBLP accuracy
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DBLP learning task
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|
DBLP running times (PR at all nodes)
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The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per lteration:

Method

Standard

Bubnov-Galerkin

DEIM-200

Time(sec)

159.3

0.002

0.033

Improvement of nearly four or five orders of magnitude.
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