Model Reduction for
 Edge-Weighted Personalized PageRank

David Bindel

Mar 2, 2015

The PageRank Model

Surfer follows random link (probability α) or teleports to random node:

$$
x^{(t+1)}=\alpha P x^{(t)}+(1-\alpha) v
$$

$P=A D^{-1}$ is a (weighted) adjacency matrix with columns normalized.

PageRank: Unweighted case

PageRank: Node Weighted

PageRank: Edge Weighted

The PageRank Model

Surfer follows random link (probability α) or teleports to random node:

$$
x^{(t+1)}=\alpha P x^{(t)}+(1-\alpha) v
$$

$P=A D^{-1}$ is a (weighted) adjacency matrix with columns normalized.

Stationary equations:

$$
M x=b, \quad M=I-\alpha P, \quad b=(1-\alpha) v
$$

PageRank iteration is a standard solver for this system.

Personalized PageRank

Introduce personalization parameters $w \in \mathbb{R}^{d}$, consider two cases:
Node-weight: $\quad \mathrm{M} \times(\mathrm{w})=\mathrm{b}(\mathrm{w})$
Edge-weight: $\quad \mathrm{M}(\mathrm{w}) \times(\mathrm{w})=\mathrm{b}$
Examples:

- $b(w)=1-\alpha V w$, columns of V are authorities for reference topics
- Different edge types (authorship, citation, etc); w_{i} is weight of type i
- Nodes are writers, edge weights for topical similarity; w are weights in a weighted cosine similarity measure

Goal: Fast computation for varying w (different users, queries)

Edge-Weight vs Node-Weight

Node-weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

Little work on fast methods for edge-weight personalization!

Idea: Model Reduction

Replace large, expensive model by cheaper "reduced-order" model

- Common idea in physical simulations
- Use the model equations (vs black-box regression)
- Great for control, optimization, etc (many evaluations)
- Expensive pre-processing is OK

Model Reduction Framework

Observation: $x(w)$ approximately in a low-dimensional space:

$$
x(w) \approx U y(w), \quad U \in \mathbb{R}^{n \times k}, \quad k \ll n
$$

Can find U by PCA/POD/KL/SVD on a "snapshot" matrix of samples

$$
X=\left[\begin{array}{llll}
x\left(w_{1}\right) & x\left(w_{2}\right) & \ldots & x\left(w_{r}\right)
\end{array}\right]
$$

Can estimate quality of best approximation in the space

- A priori by interpolation theory (given bounds on derivatives)
- A posteriori from truncated singular values

Question: How to extract the best (or near-best) $y(w)$?

Background: Interpolation Connection

Why not go with interpolant

$$
\hat{x}(w)=\sum_{j=1}^{r} x\left(w_{j}\right) c_{j}(w)
$$

where $c_{j}(w)$ is some Lagrange basis for an interpolation space?

- Online phase is cheap
- Accuracy depends on Lagrange basis (Lebesgue constants)
- Have observed better accuracy with methods based on equations

Galerkin Approach

Goal:

$$
r=M U y-b \approx 0 \text { or } U y \approx x
$$

Galerkin ansatz: $\quad W^{T}(M U y-b)=0$
Bubnov-Galerkin: $\quad W=U$
Works great for linear parameterization

$$
M(w)=I-\alpha P(w)=I-\alpha\left(\sum_{i} w_{i} P^{(i)}\right) .
$$

Model: pick edge type i with probability w_{i}, then pick edge of that type.
B-G system: $\tilde{M}(w) y(w)=U^{T} b$, where

$$
\tilde{M}(w)=U^{T} M(w) U=I-\alpha\left(\sum_{i} w_{i} \tilde{P}^{(i)}\right), \quad \tilde{P}^{(i)}=U^{T} P^{(i)} U
$$

Error estimates

Key concept: quasi-optimality

$$
\|x-\hat{x}\| \leq C \min _{z}\|x-U z\|
$$

where C can be controlled in some way.

Accuracy $=$ Good space (consistency) + Quasi-optimality (stability)

Quasi-optimality

Define $\tilde{M}=W^{T} M U$ and $\Pi=U \tilde{M}^{-1} W^{T} M$:

$$
x-U y=(I-\Pi) x \quad 0=(I-\Pi) U
$$

So we have the Galerkin error relation

$$
x-U y=(I-\Pi)(x-U z)
$$

for any candidate solution $U z$. Take norms and minimize over z :

$$
\|e\| \leq\left(1+\kappa_{G}\right)\left\|e_{\min }\right\|
$$

where

$$
\kappa_{G} \equiv\|U\|\left\|\tilde{M}^{-1}\right\|\left\|W^{\top} M\right\| .
$$

Quasi-optimality

If $W^{T} U$ normalized so $W^{T} U=I$, then for linear parameterization

$$
\left\|\tilde{M}^{-1}\right\| \leq \frac{1}{1-\alpha \max _{j}\left\|\tilde{P}^{(j)}\right\|}
$$

For 1-norm, have $\|M\|_{1} \leq 1+\alpha$, so if $\left\|\tilde{P}^{(j)}\right\|_{1}<\alpha^{-1}$ for $j=1, \ldots, d$,

$$
\kappa_{G} \leq \frac{(1+\alpha)\|U\|_{1}\|W\|_{\infty}}{1-\alpha \max _{j}\left\|\tilde{P}^{(j)}\right\|_{1}}
$$

That is, we can bound the quasi-optimality constant offline.

Galerkin Shortcomings

For nonlinear parameterizations, still need

$$
\tilde{M}(w)=U^{T} M(w) U
$$

Without a trick, have to

- Form all of $M(w)$
- Do k matrix-vector products with $M(w)$

Comparable to cost of standard PageRank algorithm!

DEIM Approach

DEIM $=$ Discrete Empirical Interpolation Method
Goal: $\quad r=M U y-b \approx 0$ or $U y \approx x$
DEIM ansatz: minimize $\left\|r_{\mathcal{I}}\right\|$ for chosen indices $\mathcal{I},|\mathcal{I}| \geq k$.
Only requires a few rows/columns of $M(w)$! But how to choose \mathcal{I} ?

- More expensive if we choose high-degree nodes (Much more an issue in social networks than physical problems)
- What about accuracy? Choose "important" (high-PR) nodes?

Cost of forming the system

Typical case: $P=A D^{-1}$, given $A(w)$. Think of partitioning:

$$
\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22} & A_{23} \\
0 & A_{32} & A_{33}
\end{array}\right]
$$

If we enforce the first block equation, we need the colored blocks

$$
\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22} & A_{23} \\
0 & A_{32} & A_{33}
\end{array}\right]
$$

where blue $=$ used in DEIM equations, red $=$ needed for normalization.

If $A=\sum_{j} w_{j} A^{(j)}$, no need to compute entries for normalization.

Cost of forming the system

Graph theoretic terms: if $A(w)$ is linear, cost to form $M_{\mathcal{I},:} U$ is

$$
\sum_{v \in \mathcal{I}} \mathrm{inDegree}(v)
$$

Issue: Social networks have some very high-degree nodes!

Quasi-optimality

Analysis for DEIM \approx analysis for Galerkin; in one-norm, have

$$
\kappa_{\text {DEIM }} \leq(1+\alpha)\|U\|_{1}\left\|\left(M_{\mathcal{I},:}(w) U\right)^{\dagger}\right\|_{1}
$$

Key: well-posedness of the projected least squares problem.

- Pro: Estimating $\left\|\left(M_{\mathcal{I},:}(w) U\right)^{\dagger}\right\|_{1}$ is cheap given $M_{\mathcal{I},:}(w) U=Q R$.
- Con: A priori bounds are hard

Choosing the interpolation set

- Key: keep $M_{\mathcal{I} \text {,: }}$ far from singular.
- If $|\mathcal{I}|=k$, this is a subset selection over rows of $M U$.
- Have standard techniques (e.g. pivoted QR)
- Want to pick \mathcal{I} once, so look at rows of

$$
Z=\left[\begin{array}{lll}
M\left(w^{(1)}\right) U & M\left(w^{(2)}\right) U & \ldots
\end{array}\right]
$$

for sample parameters $w^{(i)}$.

Application: Learning to Rank

Goal: Given $T=\left\{\left(i_{q}, j_{q}\right)\right\}_{q=1}^{|T|}$, find w that mostly ranks i_{q} over j_{1}.

- Standard: Gradient descent on full problem
- One PR computation for objective
- One PR computation for each gradient component
- Costs $d+1$ PR computations per step
- With model reduction
- Rephrase objective in reduced coordinate space
- Use factorization to solve PR for objective
- Re-use same factorization for gradient

Test case

Test case: DBLP, 3.5 M nodes, 18.5 M edges, 7 params

- Goal: Learning to rank (8 papers for training)
- Consider linear parameterization (B-G and DEIM both apply)
- Compare to ScaleRank (more restrictive than we are, but applies here)
- This is a good case - see paper for some others

DBLP singular values

DBLP accuracy

DBLP learning task

DBLP running times (PR at all nodes)

The Punchline

Test case: DBLP, 3.5 M nodes, 18.5 M edges, 7 params

Cost per Iteration:

Method	Standard	Bubnov-Galerkin	DEIM-200
Time(sec)	159.3	0.002	0.033

Improvement of nearly four or five orders of magnitude.

For more

> Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier

Wenlei Xie, David Bindel, Johannes Gehrke, and AI Demers

Submitted to KDD

