Music of the Microspheres

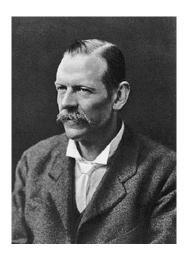
Eigenvalue problems from micro-gyro design

David Bindel

Department of Computer Science Cornell University

Tufts/Schlumberger, 15 Oct 2013

G. H. Bryan (1864–1928)



G. H. Bryan (1864–1928)

- Elected a Fellow of the Royal Society (1895)
- Best known for Stability in Aviation (1911)
- Also did important work in thermodynamics and hydrodynamics

G. H. Bryan (1864–1928)

Bryan was a friendly, kindly, very eccentric individual...

(Obituary Notices of the Fellows of the Royal Society)

... if he sometimes seemed a colossal buffoon, he himself did not help matters by proclaiming that he did his best work under the influence of alcohol.

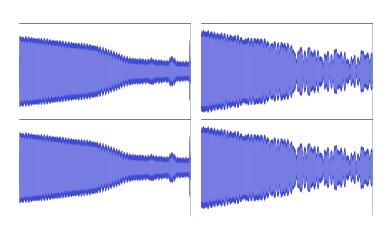
(Williams, J.G., The University College of North Wales, 1884–1927)

Bryan's Experiment

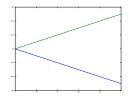
"On the beats in the vibrations of a revolving cylinder or bell" by G. H. Bryan, 1890

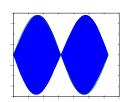
Bryan's Experiment Today

The Beat Goes On



The Beat Goes On





Free vibrations in a rotating frame (simplified):

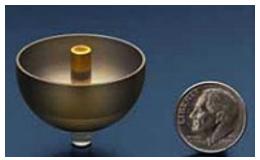
$$\ddot{\mathbf{q}} + 2\beta\Omega\mathbf{J}\dot{\mathbf{q}} + \omega_0^2\mathbf{q} = 0, \qquad \mathbf{J} \equiv \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Eigenvalue problem: $\left(-\omega^2\mathbf{I}+2i\omega\beta\Omega\mathbf{J}+\omega_0^2\right)q=0.$

Solutions: $\omega \approx \Omega_0 \pm \beta \Omega$. \Longrightarrow beating $\propto \Omega!$

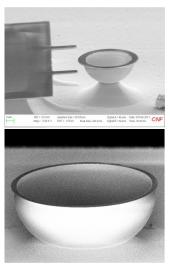
Tufts/Schlumberger

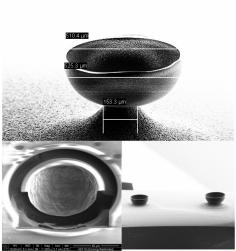
A Small Application



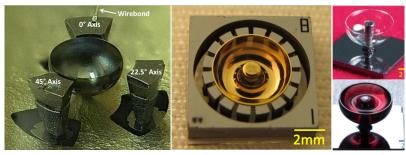
Northrup-Grummond HRG (developed c. 1965–early 1990s)

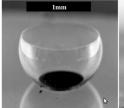
A Smaller Application (Cornell)



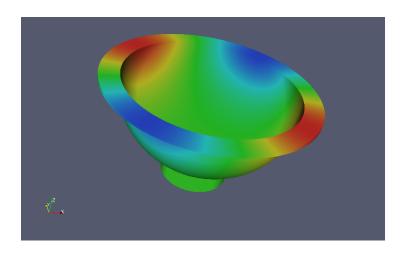


A Smaller Application (UMich, GA Tech, Irvine)





A Smaller Application!

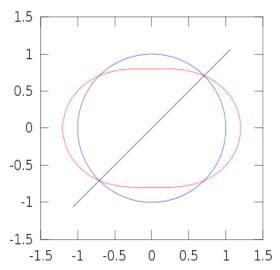


Micro-HRG / GOBLiT / OMG

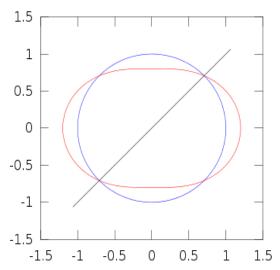
- Goal: Cheap, small (1mm) HRG
- Collaborator roles:
 - Basic design
 - Fabrication
 - Measurement
- Our part:
 - Detailed physics
 - Fast software
 - Sensitivity
 - Design optimization

Foucault in Solid State

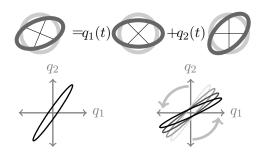
Rate Integrating Mode



Rate Integrating Mode

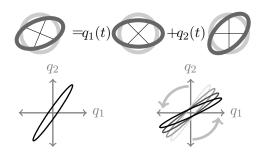


A General Picture



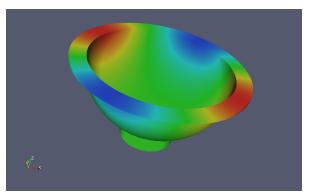
$$\ddot{\mathbf{q}} + 2\beta\Omega\mathbf{J}\dot{\mathbf{q}} + \omega_0^2\mathbf{q} = 0, \qquad \mathbf{J} \equiv \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

A General Picture



$$\begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} \approx \begin{bmatrix} \cos(-\beta\Omega t) & -\sin(-\beta\Omega t) \\ \sin(-\beta\Omega t) & \cos(-\beta\Omega t) \end{bmatrix} \begin{bmatrix} q_1^0(t) \\ q_2^0(t) \end{bmatrix}.$$

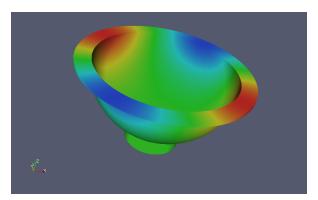
An Uncritical FEA Approach



Why not do the obvious?

- Build 3D model with commercial FE
- Run modal analysis

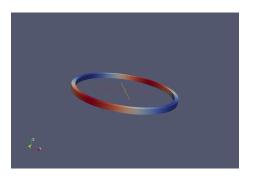
The Perturbation Picture



Perturbations split degenerate modes:

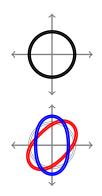
- Coriolis forces (good)
- Imperfect fab (bad, but physical)
- Discretization error (non-physical)

Three Step Program



- Perfect geometry, no rotation
- Perfect geometry, rotation
- Imperfect geometry

Step I: Perfect Geometry, No Rotation



Step I: Perfect Geometry, No Rotation

Free vibration problem in weak form

$$\forall \mathbf{w}, \quad b(\mathbf{w}, \ddot{\mathbf{u}}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

Symmetry: Q any rotation or reflection

$$b(Q\mathbf{w},Q\mathbf{u})=b(\mathbf{w},\mathbf{u})$$

$$a(Q\mathbf{w}, Q\mathbf{u}) = a(\mathbf{w}, \mathbf{u})$$

Decompose by invariant subspaces of $Q \implies$ Fourier analysis!

Fourier Expansion and Axisymmetric Shapes

Decompose into symmetric \mathbf{u}^c and antisymmetric \mathbf{u}^s in y:

$$\mathbf{u}^c = \sum_{m=0}^{\infty} \mathbf{\Phi}_m^c(\theta) \mathbf{u}_m^c(r,z), \qquad \quad \mathbf{u}^s = \sum_{m=0}^{\infty} \mathbf{\Phi}_m^s(\theta) \mathbf{u}_m^s(r,z)$$

where

$$\Phi_m^c(\theta) = \operatorname{diag}(\cos(m\theta), \sin(m\theta), \cos(m\theta))
\Phi_m^s(\theta) = \operatorname{diag}(-\sin(m\theta), \cos(m\theta), -\sin(m\theta)).$$

Modes involve only one azimuthal number m; degenerate for m > 1.

Preserve structure in FE: shape functions $N_j(r,z)\Phi_m^{c,s}(\theta)$

Block Diagonal Structure

Finite element system: $\mathbf{M}\ddot{\mathbf{u}}^h + \mathbf{K}\mathbf{u}^h = 0$

Mass has same structure.

Tufts/Schlumberger

Step II: Perfect Geometry, Rotation

Free vibration problem in weak form

$$\forall \mathbf{w}, \quad b(\mathbf{w}, \mathbf{a}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

where

$$\mathbf{a} = \ddot{\mathbf{u}} + 2\mathbf{\Omega} \times \dot{\mathbf{u}} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{x}) + \dot{\mathbf{\Omega}} \times \mathbf{x}$$

Discretize by finite elements as before:

$$\mathbf{M}\ddot{\mathbf{u}}^h + \mathbf{C}\dot{\mathbf{u}}^h + \mathbf{K}\ddot{\mathbf{u}}^h = 0$$

where C comes from Coriolis term $(2b(\mathbf{w}, \mathbf{\Omega} \times \dot{\mathbf{u}}))$.

Block Structure of Finite Element Matrix

Discretize $2b(\mathbf{w}, \mathbf{\Omega} \times \dot{\mathbf{u}})$:

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{00} & \mathbf{C}_{01} \\ \mathbf{C}_{10} & \mathbf{C}_{11} & \mathbf{C}_{12} \\ & \mathbf{C}_{21} & \mathbf{C}_{22} & \mathbf{C}_{23} \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

Off-diagonal blocks come from cross-axis sensitivity:

$$\mathbf{\Omega} = \mathbf{\Omega}_z \mathbf{e}_z + \mathbf{\Omega}_{r\theta} = \begin{bmatrix} 0 \\ 0 \\ \Omega_z \end{bmatrix} + \begin{bmatrix} \cos(\theta)\Omega_x - \sin(\theta)\Omega_y \\ \sin(\theta)\Omega_x + \cos(\theta)\Omega_y \\ 0 \end{bmatrix}.$$

Neglect cross-axis effects $(O(\Omega^2/\omega_0^2)$, like centrifugal effect).

Tufts/Schlumberger 27 / 43

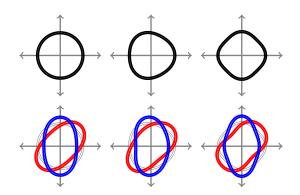
Analysis in Ideal Case

Only need to mesh a 2D cross-section!

- ullet Compute an operating mode ${f u}_c$ for the non-rotating geometry.
- Compute associated modal mass and stiffness m and k.
- Compute $g = b(\mathbf{u}_c, e_z \times \mathbf{u}_s)$.
- ullet Model: motion is approximately $q_1 \mathbf{u}_c + q_2 \mathbf{u}_s$, and

$$m\ddot{\mathbf{q}} + 2g\Omega\mathbf{J}\dot{\mathbf{q}} + k\mathbf{q} = 0,$$

Step III: Imperfect Geometry



What Imperfections?

Let me count the ways...

- Over/under etch
- Mask misalignment
- Thickness variations
- Anisotropy of etching single-crystal Si

These are *not* arbitrary!

Representing the Perturbation

Map axisymmetric $\mathcal{B}_0 \to \text{real } \mathcal{B}$:

$$\mathbf{R} \in \mathcal{B}_0 \ \mapsto \ \mathbf{r} = \mathbf{R} + \epsilon \boldsymbol{\psi}(\mathbf{R}) \in \mathcal{B}.$$

Write weak form in \mathcal{B}_0 geometry:

$$b(\mathbf{w}, \mathbf{a}) = \int_{\mathcal{B}_0} \rho \mathbf{w} \cdot \mathbf{a} J d\mathcal{B}_0,$$

$$a(\mathbf{w}, \mathbf{u}) = \int_{\mathcal{B}_0} \varepsilon(\mathbf{w}) : \mathsf{C} : \varepsilon(\mathbf{u}) J d\mathcal{B}_0,$$

where $J = \det(\mathbf{I} + \epsilon \mathbf{F})$ with $\mathbf{F} = \partial \psi / \partial \mathbf{R}$.

Tufts/Schlumberger

Decomposing ψ

Do Fourier decomposition of ψ , too! Consider case where

m= only azimuthal number of ${f w}$ n= only azimuthal number of ${f u}$ p= only azimuthal number of ${m \psi}$

Then we have selection rules

$$a(\mathbf{w}, \mathbf{u}) = \begin{cases} O(\epsilon^k), & |m - n| = kp \\ 0, & \text{otherwise} \end{cases}$$

Similar picture for b.

Decomposing ψ

- Over/under etch (p = 0)
- Mask misalignment (p = 1)
- Thickness variations (p = 1)
- Anisotropy of etching single-crystal Si (p = 4)

Block matrix structure

Ex:
$$p = 2$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_0 & \epsilon & \epsilon^2 & \epsilon^3 \\ & \mathbf{K}_1 & \epsilon & \epsilon^2 \\ \epsilon & \mathbf{K}_2 & \epsilon & \epsilon^2 \\ & \epsilon & \mathbf{K}_3 & \epsilon \\ \epsilon^2 & \epsilon & \mathbf{K}_4 & \epsilon \\ & \epsilon^2 & \epsilon & \mathbf{K}_5 \\ & \epsilon^3 & \epsilon^2 & \epsilon & \mathbf{K}_6 \end{bmatrix}$$

Impact of Selection Rules

- Fast FEA: Can neglect some wave numbers / blocks
- Also qualitative information

Qualitative Information

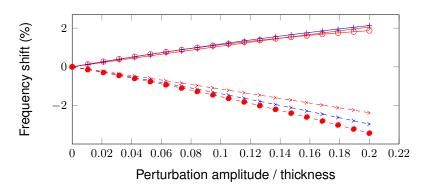
Operating wave number m, perturbation number p:

p=2m	frequencies split by $O(\epsilon)$
kp = 2m	frequencies split at most $O(\epsilon^2)$
<i>p</i> ∤2 <i>m</i>	frequencies change at $O(\epsilon^2)$, no split
p=1	
$p = 2m \pm 1$	$O(\epsilon)$ cross-axis coupling.

Note:

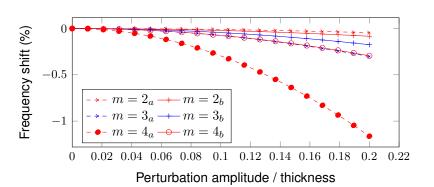
- m=2 affected at first order by p=0 and p=4 (and $O(\epsilon^2)$ split from p=1 and p=2).
- m=3 affected at first order by p=0 and p=6 (and $O(\epsilon^2)$ split from p=1 and p=3).

Mode Split for Rings: $\psi(r, \theta) = (\cos(2m\theta), 0)$.

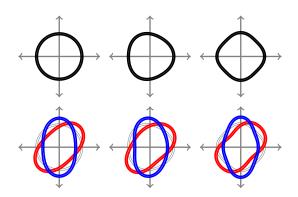


Tufts/Schlumberger

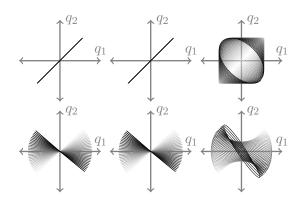
Mode Split for Rings: $\psi(r, \theta) = (\cos(m\theta), 0)$.



Analyzing Imperfect Rings



Analyzing Imperfect Rings



Beyond Rings: AxFEM

- Mapped finite / spectral element formulation
- Low-order polynomials through thickness
- High-order polynomials along length
- Trig polynomials in θ
- Agrees with results reported in literature
- Computes sensitivity to geometry, material parameters, etc.

Further Steps

Lots of possible directions:

- Symmetry breaking through damping?
- Integration with fabrication simulation?
- Joint optimization of geometry and fabrication?

Thank You

Yilmaz and Bindel "Effects of Imperfections on Solid-Wave Gyroscope Dynamics" Proceedings of IEEE Sensors 2013, Nov 3–6.

Thanks to DARPA MRIG + Sunil Bhave and Laura Fegely.

