Numerical Analysis of Resonances

David Bindel

Department of Computer Science Cornell University

20 September 2012

My favorite applications

Resonance and anchor loss

The quantum corral and tunneling

Spectra and scattering

Spectrum for $H = -\Delta + V$, supp(V) compact.

Resonances and scattering

For supp(V) $\subset \Omega$, consider a scattering experiment:

$$(H - k^2)\psi = f \text{ on } \Omega$$

 $(\partial_n - B(k))\psi = 0 \text{ on } \partial\Omega$

See resonance peaks (Breit-Wigner):

$$\phi(\mathbf{k}) \equiv \mathbf{w}^* \psi \approx \mathbf{C}(\mathbf{k} - \mathbf{k}^*)^{-1}.$$

Resonances and scattering

Consider a scattering measurement $\phi(k)$

- ▶ Morally looks like $\phi = w^*(H E)^{-1}f$?
- $w^*(H-E)^{-1}f$ is well-defined off spectrum of H
- ▶ Continuous spectrum of H is a branch cut for φ
- lacktriangleright Resonance poles are on a second sheet of definition for ϕ
- ▶ Resonance "wave functions" blow up exponentially (not L^2)

Common approach

Goal: Understand localized "leaky" vibrations

- Far field pprox infinite and homogeneous
- ▶ Dynamics ≈ truncated resonance expansion (Breit-Wigner):

$$\phi(\mathbf{k}) \approx \mathbf{C}(\mathbf{k} - \mathbf{k}^*)^{-1}, \quad \mathbf{k}_* \in \mathbb{C}$$

Reduce to a bounded domain and compute!

The 1D case: MatScat

```
http:
//www.cs.cornell.edu/~bindel/cims/matscat/
```

MatScat

Resonances and transients

(Loading outs.mp4)

Scattering solutions

Schrödinger scattering from a potential V on [a, b]

$$H\psi = \left(-rac{d^2}{dx^2} + V
ight)\psi = E\psi$$

For $E = k^2 > 0$, get solutions

$$\psi = e^{-ikx} + \psi_{\text{scatter}}$$

where ψ_{scatter} satisfies outgoing BCs:

$$\left(\frac{d}{dx} - ik\right)\psi = 0, \quad x = b$$

 $\left(\frac{d}{dx} + ik\right)\psi = 0, \quad x = a,$

This is a *Dirichlet-to-Neumann* (DtN) map: $(\partial_n - B(k))\psi = 0$

A quadratic eigenvalue problem

$$\left(-\frac{d^2}{dx^2} + V(x) - k^2\right)\psi = 0, \quad x \in (a, b)$$
$$\left(\frac{d}{dx} - ik\right)\psi = 0, \quad x = b$$
$$\left(\frac{d}{dx} + ik\right)\psi = 0, \quad x = a$$

Look for nontrivial solutions:

- ▶ Im(k) > 0: Bound states
- ► Im(k) < 0: Resonances</p>

Basic MatScat strategy

Pseudospectral collocation at Chebyshev points:

$$\left(-D^2+V(x)-k^2\right)\psi=0,\quad x\in(a,b)$$
 $(D-ik)\psi=0,\quad x=b$ $(D+ik)\psi=0,\quad x=a$

Convert to linear problem with auxiliary variable $\phi = k\psi$.

Is it that easy?

Is it that easy?

Computational desiderata

- All resonances in some region
- and error estimates
- and sensitivity estimates
- and good computational complexity

Method 1: Prony and company

Extract resonances from time-domain data (or $\phi(k)$)

$$u(t) \approx \sum_{k} c_{k} \exp(\lambda_{k} t)$$

- ► This is a (modified) *Prony* problem
- Long use both experimentally and computationally (e.g. Wei-Majda-Strauss, JCP 1988 – modified Prony applied to time-domain simulations)
- Variants like FDM still used (e.g. Johnson's harminv)

Computing resonances 2: complex scaling

Change coordinates to shift the branch cut:

$$\hat{H}\psi = \left(-rac{\mathit{d}^2}{\mathit{d}\hat{x}^2} + V
ight)\psi = \mathit{E}\psi$$

where $d\hat{x}/dx = 1 + i\sigma(x)$ is deformed outside [a, b].

- Rotates the continuous spectrum to reveal resonances
- First used to define resonances (Simon 1979)
- Also a computational method (aka PML):
 - ▶ Truncate to a finite \tilde{x} domain.
 - Discretize using standard methods
 - Solve a complex symmetric eigenvalue problem

One of my favorite computational tactics.

Computing resonances 3: a nonlinear eigenproblem

Can also define resonances via a NEP:

$$(H-k^2)\psi=0 ext{ on } \Omega$$

 $(\partial_n-B(k))\psi=0 ext{ on } \partial\Omega$

Resonance solutions are stationary points with respect to ψ of

$$\Phi(\psi, k) = \int_{\Omega} \left[(\nabla \psi)^{\mathsf{T}} (\nabla \psi) + \psi (V - k^2) \psi \right] d\Omega - \int_{\partial \Omega} \psi \mathbf{B}(k) \psi d\Gamma$$

Discretized equations (e.g. via finite or spectral elements) are

$$A(k)\psi = \left(K - k^2M - C(k)\right)\psi = 0$$

K and M are real symmetric and C(k) is *complex* symmetric.

Computational tradeoffs

- Prony
 - Relatively simple signal processing
 - Can be used with scattering experiment results
 - May require long simulations
 - Numerically sensitive
- Complex scaling
 - Straightforward implementation
 - Yields a *linear* eigenvalue problem
 - How to choose scaling parameters, truncation?
- DtN map formulation
 - Bounded domain no artificial truncation
 - Yields a nonlinear eigenvalue problem
 - DtN map is spatially nonlocal except in 1D (though diagonalized by Fourier modes on a circle)

Other options: complex absorbing potentials, approximate BCs (e.g. Engquist-Majda)

Computational desiderata

- All resonances in some region
- and error estimates
- and sensitivity estimates
- and good computational complexity

Forward and backward error analysis

Forward and backward error analysis

A simple example

Standard eigenvalue problem $(A - \lambda I)v = 0$, ||v|| = 1:

$$(A - \tilde{\lambda}I)\tilde{v} = r$$

$$(\tilde{A} - \tilde{\lambda}I)\tilde{v} = 0, \quad \tilde{A} = A - rv^{T}$$

So $\tilde{\lambda} \in \Lambda_{\epsilon}(A)$ and $\lambda \in \Lambda_{\epsilon}(\tilde{A})$, where $\Lambda_{\epsilon}(A) \equiv \{\|A^{-1}\| > \epsilon^{-1}\}$.

Or estimate $\tilde{\lambda} - \lambda$ by first-order sensitivity analysis

Sensitivity for resonances

Resonance solutions are stationary points with respect to ψ of

$$\Phi(\psi, k) = \int_{\Omega} \psi \left[-\nabla^{2} \psi + (V - k^{2}) \psi \right] d\Omega - \int_{\partial \Omega} \psi \left(\frac{\partial \psi}{\partial n} - B(k) \psi \right) d\Gamma$$
$$= \int_{\Omega} \left[(\nabla \psi)^{T} (\nabla \psi) + \psi (V - k^{2}) \psi \right] d\Omega - \int_{\partial \Omega} \psi B(k) \psi d\Gamma$$

If (ψ, k) a resonance pair, then $\Phi(\psi, k) = 0$ and $D_{\psi}\Phi(\psi, k) = 0$.

Potential perturbations

If (ψ, k) a resonance pair, then $\Phi(\psi, k) = 0$ and $D_{\psi}\Phi(\psi, k) = 0$.

Consider perturbed V:

$$\delta \Phi = D_{\psi} \Phi \cdot \delta \psi + D_{V} \Phi \cdot \delta V + D_{k} \Phi \cdot \delta k = 0$$

Use $D_{\psi}\Phi \cdot \delta\psi = 0$:

$$\delta k = -\frac{D_V \Phi \cdot \delta V}{D_k \Phi}$$

Perturbation worked out

So look at how perturbations δV change k:

$$\delta k = \frac{\int_{\Omega} \delta V \psi^2}{2k \int_{\Omega} \psi^2 - \int_{\Gamma} \psi B'(k) \psi}$$

Can also write in terms of a residual for ψ as a solution for the potential $V + \delta V$:

$$\delta k = \frac{\int_{\Omega} \psi(-\Delta + (V + \delta V) - k^2)\psi}{2k \int_{\Omega} \psi^2 - \int_{\Gamma} \psi B'(k)\psi}.$$

Backward error analysis in MatScat

- 1. Compute approximate solution $(\hat{\psi}, \hat{k})$.
- 2. Map $\hat{\psi}$ to high-resolution quadrature grid to evaluate

$$\delta \mathbf{k} = \frac{\int_{\Omega} \hat{\psi}(-\Delta + V - \hat{k}^2)\hat{\psi}}{2\hat{k}\int_{\Omega} \hat{\psi}^2 - \int_{\Gamma} \hat{\psi} B'(\hat{k})\hat{\psi}}.$$

3. If δk large, discard \hat{k} ; otherwise, accept $k \approx \hat{k} + \delta k$.

Beyond 1D

1D was relatively easy:

- Only small discretizations needed.
- Worked with exact boundary conditions
- Could rewrite general NEP as a QEP

Nonlinear to linear eigenproblems

Can also compute resonances by

- Adding a complex absorbing potential
- Complex scaling methods
- Artificial dampers

Both result in complex-symmetric ordinary eigenproblems:

$$(K_{ext} - k^2 M_{ext}) \psi_{ext} = \begin{pmatrix} \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - k^2 \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \end{pmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = 0$$

where ψ_2 correspond to extra variables (outside Ω).

Spectral Schur complement

Eliminate "extra" variables ψ_2 to get

$$\hat{A}(k)\psi_1 = \left(K_{11} - k^2 M_{11} - \hat{C}(k)\right)\psi_1 = 0$$

where

$$\hat{C}(k) = (K_{12} - k^2 M_{12})(K_{22} - k^2 M_{22})^{-1}(K_{21} - k^2 M_{21})$$

Apples to oranges?

$$A(k)\psi=(K-k^2M-C(k))\psi=0 \quad \text{(exact DtN map)}$$
 $\hat{A}(\hat{k})\hat{\psi}=(K-\hat{k}^2M-\hat{C}(\hat{k}))\hat{\psi}=0 \quad \text{(spectral Schur complement)}$

Two ideas:

- Perturbation theory for NEP for local refinement
- Complex analysis to get more global analysis

Linear vs nonlinear

To get axisymmetric resonances in corral model, compute:

- Eigenvalues of a complex-scaled problem
- Residuals in nonlinear eigenproblem
- ▶ $\log_{10} \|A(k) \hat{A}(k)\|$

Corrections two ways

$$A(k)\psi=(K-k^2M-C(k))\psi=0$$
 (exact DtN map)
$$\hat{A}(\hat{k})\hat{\psi}=(K-\hat{k}^2M-\hat{C}(\hat{k}))\hat{\psi}=0$$
 (spectral Schur complement)

▶ Plug $(\hat{k}, \hat{\psi})$ into true problem and correct:

$$k - \hat{k} pprox rac{\hat{\psi}^T A(\hat{k}) \hat{\psi}}{\hat{\psi}^T A'(\hat{k}) \hat{\psi}}$$

▶ Write $A(k) = \hat{A}(k) + E(k)$ where $E(k) = C(k) - \hat{C}(k)$. Interpret $E(\hat{k})$ as a correction to K_{ext} in linear problem.

Latter is promising for analysis beyond first-order sensitivity.

A little complex analysis

If A nonsingular on Γ , analytic inside, count eigs inside by

$$W_{\Gamma}(\det(A)) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d}{dz} \ln \det(A(z)) dz$$
$$= \operatorname{tr} \left(\frac{1}{2\pi i} \int_{\Gamma} A(z)^{-1} A'(z) dz \right)$$

 $E = A - \hat{A}$ also analytic inside Γ . By continuity,

$$W_{\Gamma}(\det(A)) = W_{\Gamma}(\det(A+E)) = W_{\Gamma}(\det(\hat{A}))$$

if A + sE nonsingular on Γ for $s \in [0, 1]$.

A general recipe

Analyticity of A and E + Matrix nonsingularity test for A + sE =

Inclusion region for $\Lambda(A+E)$ +

Eigenvalue counts for connected components of region

Application: Matrix Rouché

$$||A(z)^{-1}E(z)|| < 1$$
 on $\Gamma \implies$ same eigenvalue count in Γ

Proof:

$$\|A(z)^{-1}E(z)\|<1 \implies A(z)+sE(z)$$
 invertible for $0\leq s\leq 1$.

(Gohberg and Sigal proved a more general version in 1971.)

Aside on spectral Schur complement

Inverse of a Schur complement is a submatrix of an inverse:

$$(K_{ext} - z^2 M_{ext})^{-1} = \begin{bmatrix} \hat{A}(z)^{-1} & * \\ * & * \end{bmatrix}$$

So for reasonable norms,

$$\|\hat{A}(z)^{-1}\| \le \|(K_{ext} - z^2 M_{ext})^{-1}\|.$$

Or

$$\Lambda_{\epsilon}(\hat{A}) \subset \Lambda_{\epsilon}(K_{ext}, M_{ext}),$$

$$\Lambda_{\epsilon}(\hat{A}) \equiv \{z : \|\hat{A}(z)^{-1}\| > \epsilon^{-1}\}$$

$$\Lambda_{\epsilon}(K_{ext}, M_{ext}) \equiv \{z : \|(K_{ext} - z^2 M_{ext})^{-1}\| > \epsilon^{-1}\}$$

Nonlinear bounds from linear pseudospectra

Recall:

$$\begin{split} &A(k)\psi=(K-k^2M-C(k))\psi=0 \quad \text{(exact DtN map)} \\ &\hat{A}(\hat{k})\hat{\psi}=(K-\hat{k}^2M-\hat{C}(\hat{k}))\hat{\psi}=0 \quad \text{(spectral Schur complement)} \end{split}$$

Let
$$S_{\epsilon} = \{z \in \mathbb{C} : \|C(z) - \hat{C}(z)\| < \epsilon\}$$
. Then:
$$\Lambda(A) \cap S_{\epsilon} \subset \Lambda_{\epsilon}(\hat{A}) \subset \Lambda_{\epsilon}(\mathcal{K}_{\mathrm{ext}}, \mathcal{M}_{\mathrm{ext}})$$

Sensitivity and pseudospectra

Theorem

Let $S_{\epsilon} = \{z : ||A(z) - \hat{A}(z)|| < \epsilon\}$. Any connected component of $\Lambda_{\epsilon}(K_{ext}, M_{ext})$ strictly inside S_{ϵ} contains the same number of eigenvalues for A(k) and $\hat{A}(k)$.

For more

More information at

```
http://www.cs.cornell.edu/~bindel/
```

- Links to tutorial notes on resonances with Maciej Zworski
- Matscat code for computing resonances for 1D problems
- These slides!