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My favorite applications



Resonance and anchor loss

PML region

Wafer (unmodeled)

Electrode

Resonating disk



The quantum corral and tunneling



Spectra and scattering

Spectrum for H = −∆ + V , supp(V ) compact.



Resonances and scattering
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For supp(V ) ⊂ Ω, consider a scattering experiment:

(H − k2)ψ = f on Ω

(∂n − B(k))ψ = 0 on ∂Ω

See resonance peaks (Breit-Wigner):

φ(k) ≡ w∗ψ ≈ C(k − k∗)−1.



Resonances and scattering

Consider a scattering measurement φ(k)

I Morally looks like φ = w∗(H − E)−1f?
I w∗(H − E)−1f is well-defined off spectrum of H
I Continuous spectrum of H is a branch cut for φ
I Resonance poles are on a second sheet of definition for φ
I Resonance “wave functions” blow up exponentially (not L2)



Common approach
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Goal: Understand localized “leaky” vibrations
I Far field ≈ infinite and homogeneous
I Dynamics ≈ truncated resonance expansion

(Breit-Wigner):

φ(k) ≈ C(k − k∗)−1, k∗ ∈ C

Reduce to a bounded domain and compute!



The 1D case: MatScat

http:
//www.cs.cornell.edu/~bindel/cims/matscat/

http://www.cs.cornell.edu/~bindel/cims/matscat/
http://www.cs.cornell.edu/~bindel/cims/matscat/


MatScat
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Resonances and transients

(Loading outs.mp4)


outs.mp4
Media File (video/mp4)



Scattering solutions

Schrödinger scattering from a potential V on [a,b]

Hψ =

(
− d2

dx2 + V
)
ψ = Eψ

For E = k2 > 0, get solutions

ψ = e−ikx + ψscatter

where ψscatter satisfies outgoing BCs:(
d
dx
− ik

)
ψ = 0, x = b(

d
dx

+ ik
)
ψ = 0, x = a,

This is a Dirichlet-to-Neumann (DtN) map: (∂n − B(k))ψ = 0



A quadratic eigenvalue problem

(
− d2

dx2 + V (x)− k2
)
ψ = 0, x ∈ (a,b)(

d
dx
− ik

)
ψ = 0, x = b(

d
dx

+ ik
)
ψ = 0, x = a

Look for nontrivial solutions:
I Im(k) > 0: Bound states
I Im(k) < 0: Resonances



Basic MatScat strategy

Pseudospectral collocation at Chebyshev points:(
−D2 + V (x)− k2

)
ψ = 0, x ∈ (a,b)

(D − ik)ψ = 0, x = b
(D + ik)ψ = 0, x = a

Convert to linear problem with auxiliary variable φ = kψ.



Is it that easy?
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Is it that easy?
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Computational desiderata

I All resonances in some region
I and error estimates
I and sensitivity estimates
I and good computational complexity



Method 1: Prony and company

Extract resonances from time-domain data (or φ(k))

u(t) ≈
∑

k

ck exp(λk t)

I This is a (modified) Prony problem
I Long use both experimentally and computationally

(e.g. Wei-Majda-Strauss, JCP 1988 –
modified Prony applied to time-domain simulations)

I Variants like FDM still used (e.g. Johnson’s harminv)



Computing resonances 2: complex scaling

Change coordinates to shift the branch cut:

Ĥψ =

(
− d2

dx̂2 + V
)
ψ = Eψ

where dx̂/dx = 1 + iσ(x) is deformed outside [a,b].

I Rotates the continuous spectrum to reveal resonances
I First used to define resonances (Simon 1979)
I Also a computational method (aka PML):

I Truncate to a finite x̃ domain.
I Discretize using standard methods
I Solve a complex symmetric eigenvalue problem

One of my favorite computational tactics.



Computing resonances 3: a nonlinear eigenproblem

Can also define resonances via a NEP:

(H − k2)ψ = 0 on Ω

(∂n − B(k))ψ = 0 on ∂Ω

Resonance solutions are stationary points with respect to ψ of

Φ(ψ, k) =

∫
Ω

[
(∇ψ)T (∇ψ) + ψ(V − k2)ψ

]
dΩ−

∫
∂Ω
ψB(k)ψ dΓ

Discretized equations (e.g. via finite or spectral elements) are

A(k)ψ =
(

K − k2M − C(k)
)
ψ = 0

K and M are real symmetric and C(k) is complex symmetric.



Computational tradeoffs

I Prony
I Relatively simple signal processing
I Can be used with scattering experiment results
I May require long simulations
I Numerically sensitive

I Complex scaling
I Straightforward implementation
I Yields a linear eigenvalue problem
I How to choose scaling parameters, truncation?

I DtN map formulation
I Bounded domain — no artificial truncation
I Yields a nonlinear eigenvalue problem
I DtN map is spatially nonlocal except in 1D

(though diagonalized by Fourier modes on a circle)

Other options: complex absorbing potentials, approximate BCs
(e.g. Engquist-Majda)



Computational desiderata

I All resonances in some region
I and error estimates
I and sensitivity estimates
I and good computational complexity



Forward and backward error analysis



Forward and backward error analysis



A simple example

Standard eigenvalue problem (A− λI)v = 0, ‖v‖ = 1:

(A− λ̃I)ṽ = r

(Ã− λ̃I)ṽ = 0, Ã = A− rvT

So λ̃ ∈ Λε(A) and λ ∈ Λε(Ã), where Λε(A) ≡ {‖A−1‖ > ε−1}.

Or estimate λ̃− λ by first-order sensitivity analysis



Sensitivity for resonances

Resonance solutions are stationary points with respect to ψ of

Φ(ψ, k) =

∫
Ω
ψ
[
−∇2ψ + (V − k2)ψ

]
dΩ−

∫
∂Ω
ψ

(
∂ψ

∂n
− B(k)ψ

)
dΓ

=

∫
Ω

[
(∇ψ)T (∇ψ) + ψ(V − k2)ψ

]
dΩ−

∫
∂Ω
ψB(k)ψ dΓ

If (ψ, k) a resonance pair, then Φ(ψ, k) = 0 and DψΦ(ψ, k) = 0.



Potential perturbations

If (ψ, k) a resonance pair, then Φ(ψ, k) = 0 and DψΦ(ψ, k) = 0.

Consider perturbed V :

δΦ = DψΦ · δψ + DV Φ · δV + Dk Φ · δk = 0

Use DψΦ · δψ = 0:

δk = −DV Φ · δV
Dk Φ



Perturbation worked out

So look at how perturbations δV change k :

δk =

∫
Ω δVψ

2

2k
∫
Ω ψ

2 −
∫
Γ ψB′(k)ψ

Can also write in terms of a residual for ψ as a solution for the
potential V + δV :

δk =

∫
Ω ψ(−∆ + (V + δV )− k2)ψ

2k
∫
Ω ψ

2 −
∫
Γ ψB′(k)ψ

.



Backward error analysis in MatScat

1. Compute approximate solution (ψ̂, k̂).
2. Map ψ̂ to high-resolution quadrature grid to evaluate

δk =

∫
Ω ψ̂(−∆ + V − k̂2)ψ̂

2k̂
∫
Ω ψ̂

2 −
∫
Γ ψ̂B′(k̂)ψ̂

.

3. If δk large, discard k̂ ; otherwise, accept k ≈ k̂ + δk .



Beyond 1D

1D was relatively easy:
I Only small discretizations needed.
I Worked with exact boundary conditions
I Could rewrite general NEP as a QEP



Nonlinear to linear eigenproblems

Can also compute resonances by
I Adding a complex absorbing potential
I Complex scaling methods
I Artificial dampers

Both result in complex-symmetric ordinary eigenproblems:

(Kext −k2Mext )ψext =

([
K11 K12
K21 K22

]
− k2

[
M11 M12
M21 M22

])[
ψ1
ψ2

]
= 0

where ψ2 correspond to extra variables (outside Ω).



Spectral Schur complement
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Eliminate “extra” variables ψ2 to get

Â(k)ψ1 =
(

K11 − k2M11 − Ĉ(k)
)
ψ1 = 0

where

Ĉ(k) = (K12 − k2M12)(K22 − k2M22)−1(K21 − k2M21)



Apples to oranges?

A(k)ψ = (K − k2M − C(k))ψ = 0 (exact DtN map)

Â(k̂)ψ̂ = (K − k̂2M − Ĉ(k̂))ψ̂ = 0 (spectral Schur complement)

Two ideas:
I Perturbation theory for NEP for local refinement
I Complex analysis to get more global analysis



Linear vs nonlinear
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To get axisymmetric resonances in corral model, compute:
I Eigenvalues of a complex-scaled problem
I Residuals in nonlinear eigenproblem
I log10 ‖A(k)− Â(k)‖



Corrections two ways

A(k)ψ = (K − k2M − C(k))ψ = 0 (exact DtN map)

Â(k̂)ψ̂ = (K − k̂2M − Ĉ(k̂))ψ̂ = 0 (spectral Schur complement)

I Plug (k̂ , ψ̂) into true problem and correct:

k − k̂ ≈ ψ̂T A(k̂)ψ̂

ψ̂T A′(k̂)ψ̂

I Write A(k) = Â(k) + E(k) where E(k) = C(k)− Ĉ(k).
Interpret E(k̂) as a correction to Kext in linear problem.

Latter is promising for analysis beyond first-order sensitivity.



A little complex analysis

If A nonsingular on Γ, analytic inside, count eigs inside by

WΓ(det(A)) =
1

2πi

∫
Γ

d
dz

ln det(A(z)) dz

= tr
(

1
2πi

∫
Γ

A(z)−1A′(z) dz
)

E = A− Â also analytic inside Γ. By continuity,

WΓ(det(A)) = WΓ(det(A + E)) = WΓ(det(Â))

if A + sE nonsingular on Γ for s ∈ [0,1].



A general recipe

Analyticity of A and E +
Matrix nonsingularity test for A + sE =
Inclusion region for Λ(A + E) +
Eigenvalue counts for connected components of region



Application: Matrix Rouché

‖A(z)−1E(z)‖ < 1 on Γ =⇒ same eigenvalue count in Γ

Proof:
‖A(z)−1E(z)‖ < 1 =⇒ A(z) + sE(z) invertible for 0 ≤ s ≤ 1.

(Gohberg and Sigal proved a more general version in 1971.)



Aside on spectral Schur complement

Inverse of a Schur complement is a submatrix of an inverse:

(Kext − z2Mext )
−1 =

[
Â(z)−1 ∗
∗ ∗

]
So for reasonable norms,

‖Â(z)−1‖ ≤ ‖(Kext − z2Mext )
−1‖.

Or

Λε(Â) ⊂ Λε(Kext ,Mext ),

Λε(Â) ≡ {z : ‖Â(z)−1‖ > ε−1}
Λε(Kext ,Mext ) ≡ {z : ‖(Kext − z2Mext )

−1‖ > ε−1}



Nonlinear bounds from linear pseudospectra

Recall:

A(k)ψ = (K − k2M − C(k))ψ = 0 (exact DtN map)

Â(k̂)ψ̂ = (K − k̂2M − Ĉ(k̂))ψ̂ = 0 (spectral Schur complement)

Let Sε = {z ∈ C : ‖C(z)− Ĉ(z)‖ < ε}. Then:

Λ(A) ∩ Sε ⊂ Λε(Â) ⊂ Λε(Kext,Mext)



Sensitivity and pseudospectra

-5

-4

-3

-2

-1

0

0 2 4 6 8 10

Im
(k

)

Re(k)

Correct
Spurious0

0

-2

-2

-4

-4

-6

-8

-8

-8

-10

-10

-10

Theorem
Let Sε = {z : ‖A(z)− Â(z)‖ < ε}. Any connected component of
Λε(Kext ,Mext ) strictly inside Sε contains the same number of
eigenvalues for A(k) and Â(k).



For more

More information at

http://www.cs.cornell.edu/~bindel/

I Links to tutorial notes on resonances with Maciej Zworski
I Matscat code for computing resonances for 1D problems
I These slides!

http://www.cs.cornell.edu/~bindel/

