Resonances: Interpretation, Computation, and Perturbation

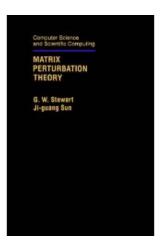
David Bindel and Maciej Zworski

Department of Computer Science Cornell University

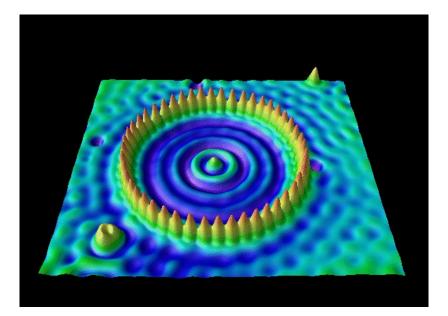
Department of Mathematics UC Berkeley

20 Jul 2010

Thanks, Pete!



The quantum corral



"Particle in a box" model

Schrödinger equation

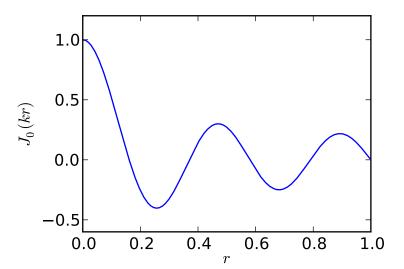
$$H\psi = (-\nabla^2 + V)\psi = E\psi$$

where

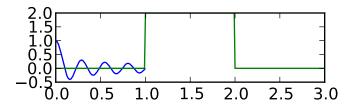
$$V(r) = \begin{cases} 0, & r < 1 \\ \infty, & r \ge 1 \end{cases}$$

Result: eigenmodes of Laplace with Dirichlet BC.

Eigenfunctions at the quantum corral



A more realistic model?

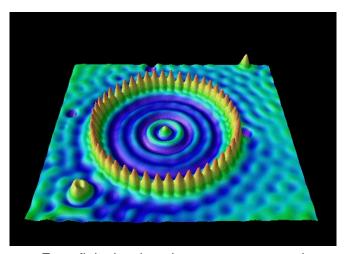


Corral really looks like a finite potential

$$V(r) = egin{cases} V_0, & R_1 < r < R_2 \\ 0, & ext{otherwise} \end{cases}$$

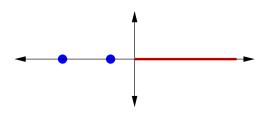
Does anything change?

Electrons unbound



For a finite barrier, electrons can escape! Not a *bound state* (conventional eigenmode).

Spectra and scattering

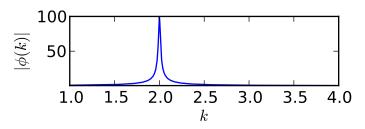


For compactly supported V, spectrum consists of

- ▶ Possible discrete spectrum (bound states) in $(-\infty, 0)$
- lacktriangle Continuous spectrum (scattering states) in $[0,\infty)$

We're interested in the latter.

Resonances and scattering



For supp(V) $\subset \Omega$, consider a scattering experiment:

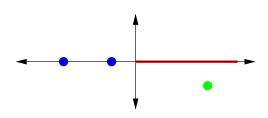
$$(H - k^2)\psi = f \text{ on } \Omega$$

 $(\partial_n - B(k))\psi = 0 \text{ on } \partial\Omega$

A measurement $\phi(k) = w^* \psi$ shows a resonance peaks. Associate with a resonance pole $k_* \in \mathbb{C}$ (Breit-Wigner):

$$\phi(k) \approx C(k - k^*)^{-1}.$$

Resonances and scattering



Consider a scattering measurement $\phi(k)$

- ▶ Morally looks like $\phi = w^*(H E)^{-1}f$?
- $w^*(H-E)^{-1}f$ is well-defined off spectrum of H
- ▶ Continuous spectrum of H is a branch cut for φ
- lacktriangleright Resonance poles are on a second sheet of definition for ϕ
- ▶ Resonance "wave functions" blow up exponentially (not L^2)

Resonances and transients

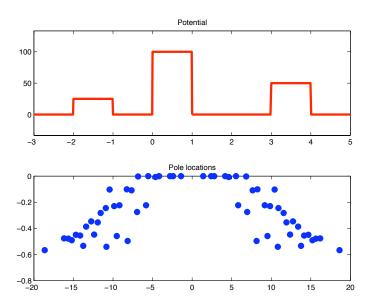
A thousand valleys' rustling pines resound.

My heart was cleansed, as if in flowing water.

In bells of frost I heard the resonance die.

– Li Bai (interpreted by Vikram Seth)

Resonances and transients



Resonances and transients

(Loading outs.mp4)

Eigenvalues and resonances

Eigenvalues	Resonances
Poles of resolvent	Second-sheet poles of extended resolvent
Vector in L ²	Wave function goes exponential
Stable states	Transients
Purely real	Imaginary part describes local decay

Computing resonances

Simplest method: extract resonances from $\phi(k)$

- ▶ This is the (modified) *Prony* method
- Has been used experimentally and computationally (e.g. Wei-Majda-Strauss, JCP 1988 – modified Prony applied to time-domain simulations)

There are better ways.

A nonlinear eigenproblem

Can also define resonances via a NEP:

$$(H-k^2)\psi=0 ext{ on } \Omega$$

 $(\partial_n-B(k))\psi=0 ext{ on } \partial\Omega$

Resonance solutions are stationary points with respect to ψ of

$$\Phi(\psi, k) = \int_{\Omega} \left[(\nabla \psi)^{\mathsf{T}} (\nabla \psi) + \psi (V - k^2) \psi \right] d\Omega - \int_{\partial \Omega} \psi \mathbf{B}(k) \psi d\Gamma$$

Discretized equations (e.g. via finite or spectral elements) are

$$A(k)\psi = \left(K - k^2 M - C(k)\right)\psi = 0$$

K and M are real symmetric and C(k) is *complex* symmetric.

Humbug!

This is still a little ugly:

- Nonlinear eigenproblems aren't as nice as linear ones
- The DtN map is spatially nonlocal
 - Though on a circle, diagonalizable in Fourier modes

Maybe I can go back to linear eigenvalue problems?

- ► Essential singularity in B(k) can't work everywhere ...
- ... but maybe I can control the error

Linear eigenproblems

Can also compute resonances by

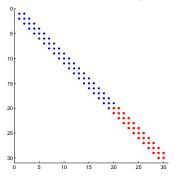
- Adding a complex absorbing potential
- Complex scaling methods

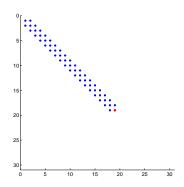
Both result in complex-symmetric ordinary eigenproblems:

$$(\textit{K}_{\textit{ext}} - \textit{k}^2 \textit{M}_{\textit{ext}}) \psi_{\textit{ext}} = \begin{pmatrix} \begin{bmatrix} \textit{K}_{11} & \textit{K}_{12} \\ \textit{K}_{21} & \textit{K}_{22} \end{bmatrix} - \textit{k}^2 \begin{bmatrix} \textit{M}_{11} & \textit{M}_{12} \\ \textit{M}_{21} & \textit{M}_{22} \end{bmatrix} \end{pmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = 0$$

where ψ_2 correspond to extra variables (outside Ω).

Spectral Schur complement





Eliminate "extra" variables ψ_2 to get

$$\hat{A}(k)\psi_1 = \left(K_{11} - k^2 M_{11} - \hat{C}(k)\right)\psi_1 = 0$$

where

$$\hat{C}(k) = (K_{12} - k^2 M_{12})(K_{22} - k^2 M_{22})^{-1}(K_{21} - k^2 M_{21})$$

Aside on spectral Schur complement

Inverse of a Schur complement is a submatrix of an inverse:

$$(K_{ext} - z^2 M_{ext})^{-1} = \begin{bmatrix} \hat{A}(z)^{-1} & * \\ * & * \end{bmatrix}$$

So for reasonable norms,

$$\|\hat{A}(z)^{-1}\| \le \|(K_{ext} - z^2 M_{ext})^{-1}\|.$$

Or

$$\Lambda_{\epsilon}(\hat{A}) \subset \Lambda_{\epsilon}(K_{ext}, M_{ext}),$$

$$\Lambda_{\epsilon}(\hat{A}) \equiv \{z : \|\hat{A}(z)^{-1}\| > \epsilon^{-1}\}$$

$$\Lambda_{\epsilon}(K_{ext}, M_{ext}) \equiv \{z : \|(K_{ext} - z^2 M_{ext})^{-1}\| > \epsilon^{-1}\}$$

Apples to oranges?

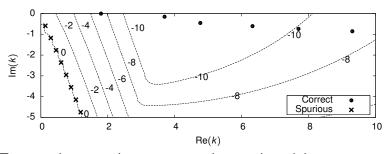
$$A(k)\psi=(K-k^2M-C(k))\psi=0$$
 (exact DtN map)
$$\hat{A}(k)\psi=(K-k^2M-\hat{C}(k))\psi=0$$
 (spectral Schur complement)

Two ideas:

- Perturbation theory for NEP for local refinement
- Complex analysis to get more global analysis

Will focus on the latter today.

Linear vs nonlinear



To get axisymmetric resonances in corral model, compute:

- Eigenvalues of a complex-scaled problem
- Residuals in nonlinear eigenproblem
- ▶ $\log_{10} \|A(k) \hat{A}(k)\|$

How do we know if we might miss something?

A little complex analysis

If A nonsingular on Γ , analytic inside, count eigs inside by

$$W_{\Gamma}(\det(A)) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d}{dz} \ln \det(A(z)) dz$$
$$= \operatorname{tr} \left(\frac{1}{2\pi i} \int_{\Gamma} A(z)^{-1} A'(z) dz \right)$$

 $E = A - \hat{A}$ also analytic inside Γ . By continuity,

$$W_{\Gamma}(\det(A)) = W_{\Gamma}(\det(A+E)) = W_{\Gamma}(\det(\hat{A}))$$

if A + sE nonsingular on Γ for $s \in [0, 1]$.

A general recipe

Analyticity of A and E + Matrix nonsingularity test for A + sE =

Inclusion region for $\Lambda(A+E)$ +

Eigenvalue counts for connected components of region

Application: Matrix Rouché

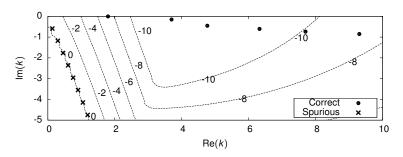
$$||A(z)^{-1}E(z)|| < 1$$
 on $\Gamma \implies$ same eigenvalue count in Γ

Proof:

$$\|A(z)^{-1}E(z)\|<1 \implies A(z)+sE(z)$$
 invertible for $0\leq s\leq 1$.

(Gohberg and Sigal proved a more general version in 1971.)

Sensitivity and pseudospectra



Theorem

Let $S_{\epsilon} = \{z : ||A(z) - \hat{A}(z)|| < \epsilon\}$. Any connected component of $\Lambda_{\epsilon}(K_{ext}, M_{ext})$ strictly inside S_{ϵ} contains the same number of eigenvalues for A(k) and $\hat{A}(k)$.

Could almost certainly do better...

For more

More information at

```
http://www.cs.cornell.edu/~bindel/
```

- Links to tutorial notes on resonances with Maciej Zworski
- Matscat code for computing resonances for 1D problems
- These slides!