Structure-preserving model reduction for MEMS modeling

David Bindel

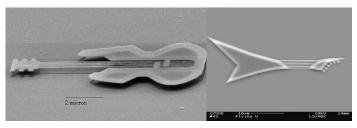
Department of Computer Science Cornell University

SIAM Annual Meeting, 12 Jul 2010

Collaborators

- Tsuyoshi Koyama
- Sanjay Govindjee
- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai

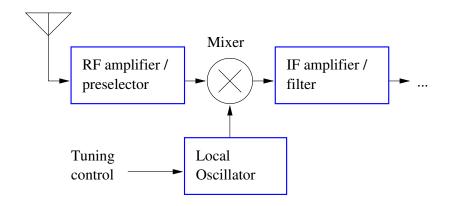
Resonant MEMS



Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars

The Mechanical Cell Phone



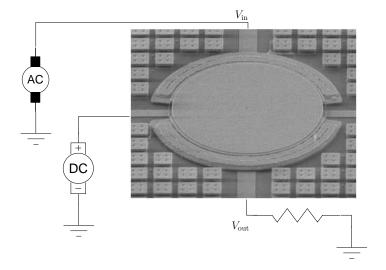
- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

Ultimate Success

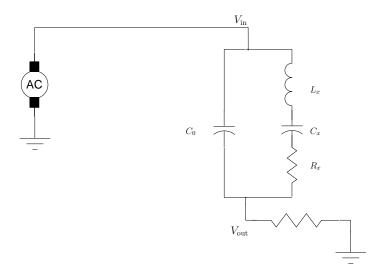
"Calling Dick Tracy!"

- Old dream: a Dick Trace watch phone!
- New dream: long battery life for smart phones

Example Resonant System



Example Resonant System



The Designer's Dream

Ideally, would like

- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up
- Backed by error analysis

We aren't there yet.

The Hero of the Hour

Major theme: use problem structure for better models

- Algebraic
 - Structure of ODEs (e.g. second-order structure)
 - Structure of matrices (e.g. complex symmetry)
- Analytic
 - Perturbations of physics (thermoelastic damping)
 - Perturbations of geometry (near axisymmetry)
 - Perturbations of boundary conditions (clamping)
- Geometric
 - Simplified models: planar motion, axisymmetry, ...
 - Substructures

SOAR and ODE structure

Damped second-order system:

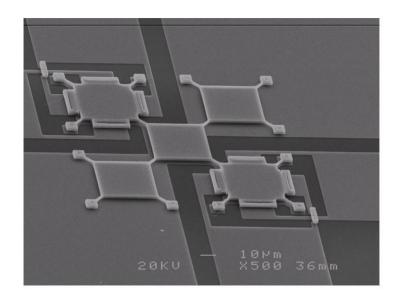
$$Mu'' + Cu' + Ku = P\phi$$
$$y = V^T u.$$

Projection basis Q_n with Second Order ARnoldi (SOAR):

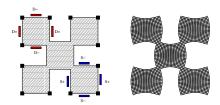
$$M_n u_n'' + C_n u_n' + K_n u_n = P_n \phi$$
$$y = V_n^T u$$

where
$$P_n = Q_n^T P$$
, $V_n = Q_n^T V$, $M_n = Q_n^T M Q_n$, . . .

Checkerboard Resonator

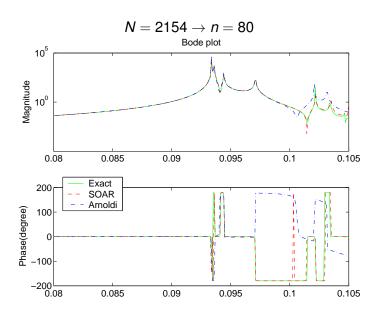


Checkerboard Resonator

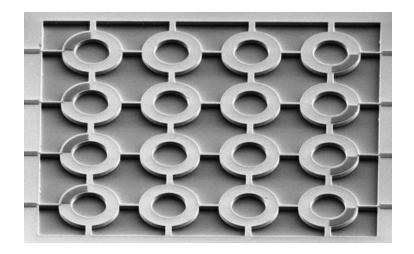


- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

Performance of SOAR vs Arnoldi



Aside: Next generation



Complex Symmetry

Model with radiation damping (PML) gives complex problem:

$$(K - \omega^2 M)u = f$$
, where $K = K^T, M = M^T$

Forced solution *u* is a stationary point of

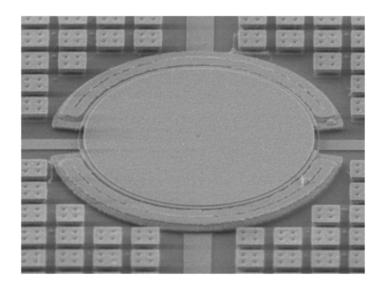
$$I(u) = \frac{1}{2}u^{T}(K - \omega^{2}M)u - u^{T}f.$$

Eigenvalues of (K, M) are stationary points of

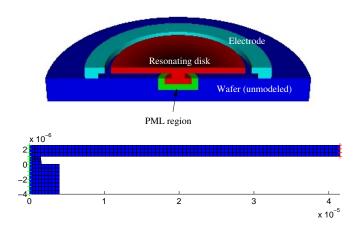
$$\rho(u) = \frac{u^T K u}{u^T M u}$$

First-order accurate vectors \implies second-order accurate eigenvalues.

Disk Resonator Simulations

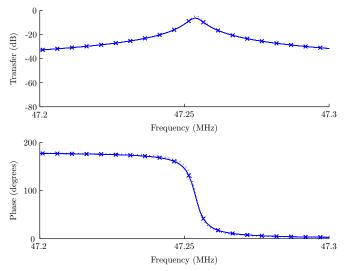


Disk Resonator Mesh



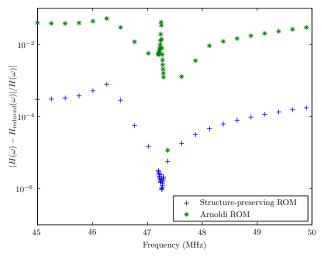
- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

Symmetric ROM Accuracy



Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)

Symmetric ROM Accuracy



Preserve structure \implies get twice the correct digits

Perturbative Structure

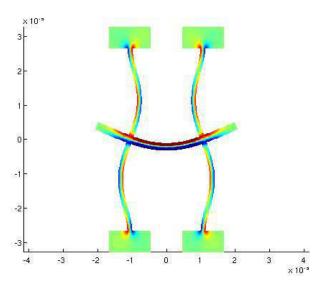
Dimensionless continuum equations for thermoelastic damping:

$$\sigma = \hat{C}\epsilon - \xi\theta\mathbf{1}
\ddot{u} = \nabla \cdot \sigma
\dot{\theta} = \eta \nabla^2 \theta - \operatorname{tr}(\dot{\epsilon})$$

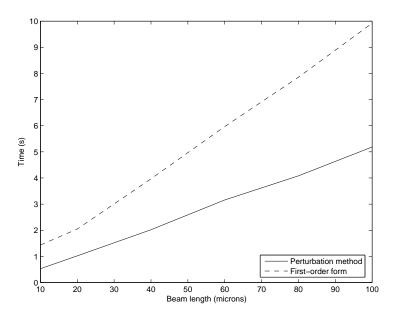
Dimensionless coupling ξ and heat diffusivity η are $10^{-4} \Longrightarrow$ perturbation method (about $\xi = 0$).

Large, non-self-adjoint, first-order coupled problem \to Smaller, self-adjoint, mechanical eigenproblem + symmetric linear solve.

Thermoelastic Damping Example



Performance for Beam Example



Aside: Effect of Nondimensionalization

100 μ m beam example, first-order form.

Before nondimensionalization

- ▶ Time: 180 s
- ▶ nnz(L) = 11M

After nondimensionalization

- ► Time: 10 s
- ▶ nnz(L) = 380K

Semi-Analytical Model Reduction

We work with hand-build model reduction all the time!

- Circuit elements: Maxwell equation + field assumptions
- Beam theory: Elasticity + kinematic assumptions
- Axisymmetry: 3D problem + kinematic assumption

Idea: Provide global shapes

- User defines shapes through a callback
- Mesh serves defines a quadrature rule
- Reduced equations fit known abstractions

Global Shape Functions

Normally:

$$u(X) = \sum_{j} N_{j}(X)\hat{u}_{j}$$

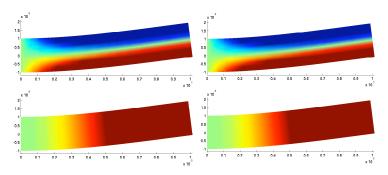
Global shape functions:

$$\hat{u} = \hat{u}^I + G(\hat{u}^g)$$

Then constrain values of some components of \hat{u}^{l} , \hat{u}^{g} .

"Hello, World!"

Which mode shape comes from the reduced model (3 dof)?



(Left: 28 MHz; Right: 31 MHz)

The latest

http://www.cs.cornell.edu/~bindel