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The Computational Science & Engineering Picture

Application

Analysis Computation



Applications Everywhere!

These tools are used in more places than you might think:
I Climate modeling
I CAD tools (computers, buildings, airplanes, ...)
I Control systems
I Computational biology
I Computational finance
I Machine learning and statistical models
I Game physics and movie special effects
I Medical imaging
I Information retrieval
I ...

Parallel computing shows up in all of these.



Why Parallel Computing?

1. Scientific computing went parallel long ago
I Want an answer that is right enough, fast enough
I Either of those might imply a lot of work!
I ... and we like to ask for more as machines get bigger
I ... and we have a lot of data, too

2. Now everyone else is going the same way!
I Moore’s law continues (double density every 18 months)
I But clock speeds stopped increasing around 2005

I ... otherwise we’d have power densities associated with the
sun’s surface on our chips!

I But no more free speed-up with new hardware generations
I Maybe double number of cores every two years instead?
I Consequence: We all become parallel programmers?



Lecture Plan

Roughly three parts:
1. Basics: architecture, parallel concepts, locality and

parallelism in scientific codes
2. Technology: OpenMP, MPI, CUDA/OpenCL, UPC, cloud

systems, profiling tools, computational steering
3. Patterns: Monte Carlo, dense and sparse linear algebra

and PDEs, graph partitioning and load balancing, fast
multipole, fast transforms



Goals for the Class

You will learn:
I Basic parallel concepts and vocabulary
I Several parallel platforms (HW and SW)
I Performance analysis and tuning
I Some nuts-and-bolts of parallel programming
I Patterns for parallel computing in computational science

You might also learn things about
I C and UNIX programming
I Software carpentry
I Creative debugging (or swearing at broken code)



Workload

CSE usually requires teams with different backgrounds.
I Most class work will be done in small groups (1–3)
I Three assigned programming projects (20% each)
I One final project (30%)

I Should involve some performance analysis
I Best projects are attached to interesting applications
I Final presentation in lieu of final exam



Prerequisites

You should have:
I Basic familiarity with C programming

I See CS 4411: Intro to C and practice questions.
I Might want Kernighan-Ritchie if you don’t have it already

I Basic numerical methods
I See CS 3220 from last semester.
I Shouldn’t panic when I write an ODE or a matrix!

I Some engineering or physics is nice, but not required

http://www.cs.cornell.edu/courses/cs4410/2010fa/CS4411/slides/intro_to_c/intro_to_c.pdf
http://www.cs.cornell.edu/courses/cs4410/2010fa/CS4411/slides/intro_to_c/questions/
http://www.cs.cornell.edu/~bindel/class/cs3220-s11


How Fast Can We Go?

Speed records for the Linpack benchmark:

http://www.top500.org

Speed measured in flop/s (floating point ops / second):
I Giga (109) – a single core
I Tera (1012) – a big machine
I Peta (1015) – current top 10 machines (5 in US)
I Exa (1018) – favorite of funding agencies

Current record-holder: Japan’s K computer (8.2 Petaflop/s).

http://www.top500.org


Peak Speed of the K Computer

(2× 109 cycles / second) ×
(8 flops / cycle / core) =

16 GFlop/s / node

(16 GFlop/s / node) × (8 cores / node) =
128 GFlop/s / node

(128 GFlop/s / node) ×
(68544 nodes) =

8.77 GFlop/s

Linpack performance is about 93% of peak.



Current US Record-Holder

DOE Jaguar at ORNL
I Cray XT5-HE with

I 6-core AMD x86_64 Opteron 2.6 GHz (10.4 GFlop/s/core)
I 224162 cores
I Custom interconnect

I 2.33 Petaflop/s theoretical peak
I 1.76 Petaflop/s Linpack benchmark (75% peak)
I 0.7 Petaflop/s in a blood flow simulation (30% peak)

(Highly tuned – this code won the 2010 Gordon Bell Prize)
I Performance on a more standard code?

I 10% is probably very good!

http://www.top500.org/system/10184
http://dl.acm.org/citation.cfm?id=1884648


Parallel Performance in Practice

So how fast can I make my computation?
I Peak > Linpack > Gordon Bell > Typical
I Measuring performance of real applications is hard

I Typically a few bottlenecks slow things down
I And figuring out why they slow down can be tricky!

I And we really care about time-to-solution
I Sophisticated methods get answer in fewer flops
I ... but may look bad in benchmarks (lower flop rates!)

See also David Bailey’s comments:
I Twelve Ways to Fool the Masses When Giving Performance

Results on Parallel Computers (1991)
I Twelve Ways to Fool the Masses: Fast Forward to 2011 (2011)

http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-12ways.pdf


Quantifying Parallel Performance

I Starting point: good serial performance
I Strong scaling: compare parallel to serial time on the same

problem instance as a function of number of processors (p)

Speedup =
Serial time

Parallel time

Efficiency =
Speedup

p

I Ideally, speedup = p. Usually, speedup < p.
I Barriers to perfect speedup

I Serial work (Amdahl’s law)
I Parallel overheads (communication, synchronization)



Amdahl’s Law

Parallel scaling study where some serial code remains:

p = number of processors
s = fraction of work that is serial
ts = serial time
tp = parallel time ≥ sts + (1− s)ts/p

Amdahl’s law:

Speedup =
ts
tp

=
1

s + (1− s)/p
>

1
s

So 1% serial work =⇒ max speedup < 100×, regardless of p.



A Little Experiment

Let’s try a simple parallel attendance count:
I Parallel computation: Rightmost person in each row

counts number in row.
I Synchronization: Raise your hand when you have a count
I Communication: When all hands are raised, each row

representative adds their count to a tally and says the sum
(going front to back).

(Somebody please time this.)



A Toy Analysis

Parameters:

n = number of students
r = number of rows

tc = time to count one student
tt = time to say tally
ts ≈ ntc
tp ≈ ntc/r + rtt

How much could I possibly speed up?



Modeling Speedup
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(Parameters: n = 55, tc = 0.3, tt = 2.)



Modeling Speedup

The bound

speedup <
1
2

√
ntc
tt

is usually tight (for previous slide: 1.435 < 1.436).

Poor speed-up occurs because:
I The problem size n is small
I The communication cost is relatively large
I The serial computation cost is relatively large

Some of the usual suspects for parallel performance problems!

Things would look better if I allowed both n and r to grow —
that would be a weak scaling study.



Summary: Thinking about Parallel Performance

Today:
I We’re approaching machines with peak exaflop rates
I But codes rarely get peak performance
I Better comparison: tuned serial performance
I Common measures: speedup and efficiency
I Strong scaling: study speedup with increasing p
I Weak scaling: increase both p and n
I Serial overheads and communication costs kill speedup
I Simple analytical models help us understand scaling

Next time: Computer architecture and serial performance.



And in case you arrived late

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/

http://www.piazza.com/cornell/cs5220

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/
http://www.piazza.com/cornell/cs5220

