Lecture 1: Introduction to CS 5220

David Bindel

24 Aug 2011



CS 5220: Applications of Parallel Computers

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/
http://www.piazza.com/cornell/cs5220

Time: TR 8:40-9:55

Location: 110 Hollister

Instructor: David Bindel (bindel@cs)
Office: 5137 Upson Hall

Office hours: M 4-5, Th 10-11, or by appt.


http://www.cs.cornell.edu/~bindel/class/cs5220-f11/
http://www.piazza.com/cornell/cs5220

The Computational Science & Engineering Picture

Application

N

Computation




Applications Everywhere!

These tools are used in more places than you might think:

>

>

>

>

>

>

Climate modeling

CAD tools (computers, buildings, airplanes, ...)
Control systems

Computational biology

Computational finance

Machine learning and statistical models

Game physics and movie special effects
Medical imaging

Information retrieval

Parallel computing shows up in all of these.



Why Parallel Computing?

1. Scientific computing went parallel long ago
» Want an answer that is right enough, fast enough
Either of those might imply a lot of work!
... and we like to ask for more as machines get bigger
... and we have a lot of data, too
2. Now everyone else is going the same way!
» Moore’s law continues (double density every 18 months)
» But clock speeds stopped increasing around 2005
» ... otherwise we’'d have power densities associated with the
sun’s surface on our chips!
» But no more free speed-up with new hardware generations
» Maybe double number of cores every two years instead?
» Consequence: We all become parallel programmers?

v vy



Lecture Plan

Roughly three parts:
1. Basics: architecture, parallel concepts, locality and
parallelism in scientific codes
2. Technology: OpenMP, MPI, CUDA/OpenCL, UPC, cloud
systems, profiling tools, computational steering

3. Patterns: Monte Carlo, dense and sparse linear algebra
and PDEs, graph partitioning and load balancing, fast
multipole, fast transforms



Goals for the Class

You will learn:

Basic parallel concepts and vocabulary

Several parallel platforms (HW and SW)

Performance analysis and tuning

Some nuts-and-bolts of parallel programming

Patterns for parallel computing in computational science

v

v

v

v

v

You might also learn things about
» C and UNIX programming
» Software carpentry
» Creative debugging (or swearing at broken code)



Workload

CSE usually requires teams with different backgrounds.
» Most class work will be done in small groups (1-3)
» Three assigned programming projects (20% each)
» One final project (30%)
» Should involve some performance analysis

» Best projects are attached to interesting applications
» Final presentation in lieu of final exam



Prerequisites

You should have:
» Basic familiarity with C programming
» See CS 4411: Intro to C and practice questions.
» Might want Kernighan-Ritchie if you don’t have it already

» Basic numerical methods
» See CS 3220 from last semester.
» Shouldn’t panic when | write an ODE or a matrix!

» Some engineering or physics is nice, but not required


http://www.cs.cornell.edu/courses/cs4410/2010fa/CS4411/slides/intro_to_c/intro_to_c.pdf
http://www.cs.cornell.edu/courses/cs4410/2010fa/CS4411/slides/intro_to_c/questions/
http://www.cs.cornell.edu/~bindel/class/cs3220-s11

How Fast Can We Go?

Speed records for the Linpack benchmark:

http://www.top500.0rg

Speed measured in flop/s (floating point ops / second):

v

Giga (10%) — a single core

Tera (10'2) — a big machine

Peta (10'%) — current top 10 machines (5 in US)

Exa (10'8) — favorite of funding agencies

Current record-holder: Japan’s K computer (8.2 Petaflop/s).

v

v

v


http://www.top500.org

Peak Speed of the K Computer

(2 x 10° cycles / second) x
(8 flops / cycle / core) =
16 GFlop/s / node

(16 GFlop/s / node) x (8 cores / node) =
128 GFlop/s / node

(128 GFlop/s / node) x

(68544 nodes) =
8.77 GFlop/s

Linpack performance is about 93% of peak.



Current US Record-Holder

DOE Jaguar at ORNL
» Cray XT5-HE with

» 6-core AMD x86_64 Opteron 2.6 GHz (10.4 GFlop/s/core)
» 224162 cores
» Custom interconnect

» 2.33 Petaflop/s theoretical peak
» 1.76 Petaflop/s Linpack benchmark (75% peak)

» 0.7 Petaflop/s in a blood flow simulation (30% peak)
(Highly tuned — this code won the 2010 Gordon Bell Prize)
» Performance on a more standard code?
» 10% is probably very good!


http://www.top500.org/system/10184
http://dl.acm.org/citation.cfm?id=1884648

Parallel Performance in Practice

So how fast can | make my computation?
» Peak > Linpack > Gordon Bell > Typical

» Measuring performance of real applications is hard

» Typically a few bottlenecks slow things down
» And figuring out why they slow down can be tricky!

» And we really care about time-to-solution

» Sophisticated methods get answer in fewer flops
» ... but may look bad in benchmarks (lower flop rates!)

See also David Bailey’s comments:

» Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers (1991)

» Twelve Ways to Fool the Masses: Fast Forward to 2011 (2011)


http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
http://crd.lbl.gov/~dhbailey/dhbtalks/dhb-12ways.pdf

Quantifying Parallel Performance

v

Starting point: good serial performance

Strong scaling: compare parallel to serial time on the same
problem instance as a function of number of processors (p)

v

Speedup — Serial time
P P= Parallel time
Efficiency — Sp("‘Zd“p

v

Ideally, speedup = p. Usually, speedup < p.
Barriers to perfect speedup

» Serial work (Amdahl’s law)
» Parallel overheads (communication, synchronization)

v



Amdahl’s Law

Parallel scaling study where some serial code remains:

p = number of processors

s = fraction of work that is serial

ts = serial time

tp = parallel time > sts + (1 — 8)ts/p

Amdahl’s law:
1

_ 1
Speedup = th s+(1-s)/p ”s

So 1% serial work = max speedup < 100x, regardless of p.



A Little Experiment

Let’s try a simple parallel attendance count:

» Parallel computation: Rightmost person in each row
counts number in row.

» Synchronization: Raise your hand when you have a count

» Communication: When all hands are raised, each row
representative adds their count to a tally and says the sum
(going front to back).

(Somebody please time this.)



A Toy Analysis

Parameters:

n = number of students

r = number of rows

t. = time to count one student
f; = time to say tally

ts =~ nt,

h = nte/r+ rt

How much could | possibly speed up?



Modeling Speedup

1.2

0.8

Predicted speedup
I

0.6

o
N
N
o
oo

10

(Parameters: n=55,1t =0.3, ; = 2.)

12




Modeling Speedup

The bound

1 /nt;
dup < 54/ —
speedup 5 h

is usually tight (for previous slide: 1.435 < 1.436).

Poor speed-up occurs because:
» The problem size nis small
» The communication cost is relatively large
» The serial computation cost is relatively large
Some of the usual suspects for parallel performance problems!

Things would look better if | allowed both n and r to grow —
that would be a weak scaling study.



Summary: Thinking about Parallel Performance

Today:
» We're approaching machines with peak exaflop rates
» But codes rarely get peak performance
» Better comparison: tuned serial performance
» Common measures: speedup and efficiency
» Strong scaling: study speedup with increasing p
» Weak scaling: increase both p and n
» Serial overheads and communication costs kill speedup
» Simple analytical models help us understand scaling

Next time: Computer architecture and serial performance.



And in case you arrived late

http://www.cs.cornell.edu/~bindel/class/cs5220-£f11/
http://www.piazza.com/cornell/cs5220


http://www.cs.cornell.edu/~bindel/class/cs5220-f11/
http://www.piazza.com/cornell/cs5220

