Clockwork Finance: Automated
Analysis of Economic Security In
Smart Contracts

To Appear in IEEE S&P’23

Mahimna Arl
Kelkar Juels

(First three authors contributed equally)

DeFi total TVL

2018 2019 2020 2021 2022
Mar Mar Mar Mar Mar

 Smart contracts execute in sequential and atomic transactions
 EXxecution is deterministic
 Most blockchains have transparent execution

* Therefore: Easy interoperability among smart contracts and novel financial
Instruments

Money Legos

Source: https://medium.com/totle/building-with-money-legos-ab63a58ae764

Unintended Behaviour

Swap 1,000 into ETH ﬂ

Unintended Behaviour

| , ‘l CONTRACT
=1 Swap 1,000 into ETH ﬂ

DE

= L

.) ’
.Dec'eht'raliied Exchanc L\/\ N

Ve
)

Unintended Behaviour

., ‘l CONTRACT
=1 Swap 1,000 into ETH ﬂ

DE
. l -ﬁ ’*'{“ ¢

.) ’
.Dec'eht'raliied Exchanc L\/\ N

Ve
)

S

ETH Price

Unintended Behaviour

Sandwich

Swap X into ETH

|| B CONTRACT |

D | . | o Swap 1,000 into ETH

: -)_l . il ®

P

|
.Dec'eht'raliied Exchang L\/\/?

Y

S

Swap Y ETH into

ETH Price

Unintended Behaviour

Sandwich

Swap X into ETH

CONTRACT

Swap 1,000 into ETH

..Decéht'ra'liized Exchang

t’,

—

Swap Y ETH into

ETH Price

MEV = Miner Extractable Value (or Maximal Extractable Value) - Ability to extract
value by reordering, inserting or censoring transactions

Contract Composition

Source: https://medium.com/totle/building-with-money-legos-
ab63a58aer64

Contract Composition

e Flashloans + DEX

Source: https://medium.com/totle/building-with-money-legos-
ab63a58aer64

Contract Composition

e Flashloans + DEX

* Lending contracts using DEX to
price the debt

Source: https://medium.com/totle/building-with-money-legos-
ab63a58aer64

Contract Composition

e Flashloans + DEX

* Lending contracts using DEX to
price the debt

e Flashloans + Governance Contract

Source: https://medium.com/totle/building-with-money-legos-
ab63a58aer64

Contract Composition

e Flashloans + DEX

* Lending contracts using DEX to
price the debt

e Flashloans + Governance Contract

« DEX + DEX + DEX ...

Source: https://medium.com/totle/building-with-money-legos-
ab63a58aer64

Unintended Behaviour

09 May 2022 00:53 GMT-7 - 2 min read

Tech

Solana DeFi Protocol Nirvana Drained of Liquidity DeFi Lending Protocol Fortress
After Flash Loan Exploit Loses All Funds in Oracle Price
The price of the protocol’'s ANA token fell almost 80% following the attack. M an | P u Iatl on Attac k

By Shaurya Malwa @ Jul 28, 2022 at 4:41 am. PDT Updated Jul 28, 2022 at 8:06 a.m. PDT

@ JESSE COGHLAN JUN 17, 2022

Inverse Finance exploited again for $1.2M in
flash loan oracle attack

No user funds have been affected by the exploit, but Inverse Finance has incurred debt and

ofieredhe attackerabountytol - BAYC ApeCoin Suffers $800k Flash Loan “Attack”
During Airdrop

Posted on Mar 30, 2022 | BLOG f ¥ in

MEV...An Industry

$674,300,932 $6,930,451 $113k

Total Extracted MEV Last 30 days Extracted MEV Last 24h Extracted MEV

Cumulative Extracted MEV - Gross Profit

664.04N073-73M

633.95M

598.05Mm007-96M

365.5M

510.82M

435.89M

398.46M

363.79M
342.06M

= 221.27M
173.57M

109.38M
76.23M
41.28M >2-08M

0.000012M 0.031M 3.42M 3.53M 4.16M 14.77M

https://explore.flashbots.net

Existing Techniques for Security

 Human Auditing
* Fuzz Testing
o Static Analysis (eg. Slither)

e Formal Verification of functional correctness

Focus on Bug Hunting, Functional Correctness and Secret Leaks

This Work - Clockwork Finance

Directly reason about economic properties of smart contracts (and their interactions)
by leveraging existing formal verification techniques

Unlike Traditional Finance, Smart Contracts execution is deterministic,
sequential, transparent and atomic — allowing for formal verification of the
behaviour of DeFi applications

10

Benefits to the ecosystem

Developers - Prove bounds on the value exposed by their contracts and interaction
of their contracts with other contracts

Users - Find bounds on the value extractable from their transactions

Consensus Researchers - Rigorously study the impact of MEV on consensus

11

Outline

* Definitional tools
e Defining (M)EV
e Defining Secure Composition
* Practical Instantiation into Clockwork Finance Framework (CFF)
e Design
e Use for proofs

o Use for finding attacks

12

Outline

* Definitional tools
e Defining (M)EV
* Defining Secure Composition
e Practical Instantiation into Clockwork Finance Framework (CFF)
e Design
 Use for proofs

o Use for finding attacks

13

Miner Extractable Value (MEV)

14

Player

Extractable Value (EV)

15

Player

Extractable Value (EV)

B1 B2 B3

balance (a)|0
EV(P,B,s) = E [
(P, B, s) (Bl,?’%}i)eg{ —balanceq(a)|0] }

aEAp

15

Player

Extractable Value (EV)

15

Extractable Value (EV)

Player P

Use MEV as the measure of economic security

Miner iIs the most powerful out of all permissionless players - MEV
subsumes all other attacks

15

Secure Composition

10

CONTRACT

T— ©

Contract C

Secure Composition

10

Secure Composition

-

CONTRACT

T

Valid Block

10

Secure Composition

-

= CONTRACT | TR) C does
= . R | NTR C does
= NOT
= compose
compose :
. with
with

C Valid Block

10

Outline

* Practical Instantiation into Clockwork Finance Framework (CFF)
* Design
e Use for proofs

 Use for finding attacks

17

Formal Verification

Program

State S Q

Verity Property [<>/ \.
Ia
@

* Proof

O
C

Formal Verification

Program

o

/

Counterexample \

Clockwork Finance Framework (CFF)

Clockwork Finance Framework (CFF)

(Symbolic) Transactions = tx1, tx2, tx3

Verify Property: MEV < 0

19

Clockwork Finance Framework (CFF)

3

State S |

(Symbolic) Transactions = tx1, tx2, tx3

7

Swap X Eth for Y USD
X>=0,¥>=0

Verify Property: MEV < 0

19

Clockwork Finance Framework (CFF)

Clockwork Finance Framework (CFF)

Al
= |2

2l

3

(Symbolic) Transactions = tx1, tx2, tx3 tx3

7

Swap X Eth for Y USD
X>=0,¥>=0

Verify Property: MEV < 0

Counterexample

F(X,Y)

19

K Framework

4 N ' |
Test-case Deductive
generation prOg.r.am
X Y, \ Verifier
é >
Llnterpreter Formal Language Definition (Model A

(Syntax and Semantics) T
- J

Symbolic

-\
(semantic) execution

Debugger/

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore, B., Park, D., Zhang, Y., Stefanescu, A. and Rosu, G., 2018. Kevm: A complete formal
semantics of the ethereum virtual machine. In CSF’18 20

K Framework

Ve N .
Test-case Deductive
generation s
5 P \ verifier
a I
Interpreter Formal Language Definition (Model b
_ J

(Syntax and Semantics) e
AN J

Symbolic
execution

(semantic)\
_DebuggerJ
« Human Readable Formal Specification

e KEVM - Formal Ethereum Semantics in K

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore, B., Park, D., Zhang, Y., Stefanescu, A. and Rosu, G., 2018. Kevm: A complete formal
semantics of the ethereum virtual machine. In CSF’18 20

CFF Design

CFF Design

CFF Language Model

Input - (Symbolic) State
and Transactions

., | K Deductive

Verifier

21

CFF Design

CFF Language Model

Codified CF
Definitions

Input - (Symbolic) State

I > tiv
and Transactions K Deductive

Verifier

CFF Design

CFF Language Model

() 4)
Codified CF Smart

Definitions Contracts Code

_ J _ J

_ ()

Input - (Symbollc_:) State | K Deductive
and Transactions .

Verifier

CFF Design

CFF Language Model

() 4) 4)
Codified CF Smart .
Definitions Contracts Code EVM Semantics

_ J _ J _ Y,

_ ()
Input - (Symbollc_:) State | K Deductive
and Transactions .
Verifier

CFF Design

CFF Language Model

a) 4) 4)
Codified CF Smart .
Definitions Contracts Code EVM Semantics
_ J _ J _ J
] ()
Input - (Symbollc_:) State | K Deductive
and Transactions e
Verifier
_ J
Composability Counterexample
Proof Strategies

. _J - _J

CFF Desig

(")

Smart
pontracts Code)

CFF Language Model

() 4) 4)
COd.'f'.e.d CF EVM Semantics
Definitions

_ J _ J _ Y,

_ ()

Input - (Symbollc_:) State | K Deductive
and Transactions e
Verifier
_ Y,
Composability Counterexample
Proof Strategies

. _J - _J

CFF Models

CFF Models

1

are over
approximations of the
smart contract code.

F(X,Y)

23

CFF Models

1

are over
approximations of the
smart contract code.

F(X,Y)

23

CFF Models

(Symbolic) Transactions = tx1, tx2, tx3

Swap X Eth for 'Y USD
X>=0,Y>=0

Verify Property: MEV < 0

tx31 tx21 tx31

F(X,Y)

i —3

OO,

tx3

are over
approximations of the
smart contract code.

False Positive

23

CFF Models

(Symbolic) Transactions = tx1, tx2, tx3

Swap X Eth for 'Y USD
X>=0,Y>=0

Verify Property: MEV < 0

tx3l tx21 tx31

F(X,Y)

) —

OO,

tx3

Q dare over

/ \ approximations of the
smart contract code.

False Positive
But No False Negatives

23

CFF Models

def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp,
assert deadline >= block.timestamp and (eth_sold > @ and min_tokens > 0)
token _reserve: uint256 = self.token.balanceOf(self)

tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unit
assert tokens_bought >= min_tokens

assert self.token.transfer(recipient, tokens_bought)
Llog.TokenPurchase(buyer, eth_sold, tokens_bought)

Process : Manual translation by pruning irrelevant code paths.

Becomes easier if the contract has been verified formally for functional correctness

Open sourced CFF models for UniswapV1, UniswapV2, MakerDAO, FlashLoans, Airdrops

24

CFF Models

def ethToTokenInpu (eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp,

1i T <)

“ € L~ AA' "-’.AAA-'-—\“QA »—\A-AJ . - W N sﬁﬁj -A—.QA -‘-Al iy
o oWl v uCau'ca '

—— p— _ < ' — L
- — M LU LA CXAININC Y tUIIIP (Al A ‘ - -\ J AT 1T HIFEFNE CVUINC

token_reserve: uint256 = self.token. balanceOf(seLf)

tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unit
assert tokens_bought >= min_tokens

assert self.token.transfer(recipient, tokens_bought)
Llog.TokenPurchase(buyer, eth_sold, tokens_bought)

Process : Manual translation by pruning irrelevant code paths.

Becomes easier if the contract has been verified formally for functional correctness

Open sourced CFF models for UniswapV1, UniswapV2, MakerDAO, FlashLoans, Airdrops

24

CFF Models

def ethToTokenInpu (eth_sold: uint256(wei) min_tokens: uint256, deadline: timestamp,

- .« N\
i

HooLl L uLau vl o =~ U

-~ p— _ < ' — -
i - — > LU\.f\n i. e o LUIIIP Uliu \ s ‘ - L J AT 1T Il.l.ii LUi\L

token_reserve: uint256 = self.token. balanceOf(seLf)
tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unit

- nr+ +nbonn hoaiioh+ o m1n +Abnpﬁ
el -

Ly
— - ua-iﬁ é - ANy

assert self.token.transfer(recipient, tokens_bought)
log.TokenPurchase(buyer, eth_sold, tokens_bought)

Process : Manual translation by pruning irrelevant code paths.

Becomes easier if the contract has been verified formally for functional correctness

Open sourced CFF models for UniswapV1, UniswapV2, MakerDAO, FlashLoans, Airdrops

24

CFF Desig

(")

Smart
Qontracts Code)

CFF Language Model

() 4) 4)
COd.'f'.e.d CF CFF Models EVM Semantics
Definitions
_ J _ J _ Yy,
_ ()
Input - (Symbollc_;) State | K Deductive
and Transactions e
Verifier
_ Y,
(/ f A Validated b
Composability Counterexample e atg y
Proof Strategies Simulation on
Archive Node

\ _/ \- _J

More Scaling Optimisations

1. General Optimisations

1. Transactions for a sender need to be serialised using “nonces”. Many
iInvalid orderings are equivalent

2. Reorderings across different non interacting contracts are equivalent
3. Randomised reorderings lead to better convergence in practice.
2. Contract Specific Optimisations

1. Uniswap-like AMMs are path independent

20

CFF Evaluation - AMM

Sushiswap
—— UniswapV2 ﬁ *
1.09 —— uUniswapV1l | H
/-day moving average of
MEV per block in a sample 0.8 -
of 1000 random blocks in — '
each month -
0.6 - | l
. UniswapV1 to UniswapV2 K w
u>_, migration
= 0.4 - |
4
h]
0.2 -

0.0 -

CFF Evaluation - Maker + Uniswap

Highest Observed MEV Blocks

100000 -

80000 -

Uniswap price used as

60000 -
40000 -

(@sn ul) A3

oracle in Maker

20000 -

L88VL80T
I8ST080T
0LEZV601
0vL88L01
68VV00TIL
18LE€080T
€1SE080T
92810801
reve080T
LTZEO80T
1ZSE080T
€8EZ00TT
G0SE080T
6LLE080T
€961L60T
LYESO60T
LV[88L0T
9T0TO080TL
GEBBEBOT
vvL90601

Block Number

CFF Model for Maker abstracts
out liquidation auction

28

CFF Evaluation

Many More In the paper...
Governance, Flashloans, Airdrops

29

Conclusion

* Initiated the formal study of economic behaviour of smart contracts
through the lens of MEV

e Definitions for MEV and Secure Composition

 Clockwork Finance Framework (CFF) : Practical Proof System
based on Formal Verification

* Developers can use CFF to generate proofs of bounds on the MEV
exposed by their contracts, and users can use CFF to analyse the MEV

extractable from their transactions.
Paper : https://cs.cornell.edu/~babel/cff.pdf

Github : https://github.com/defi-formal/cff

Contact : babel@cs.cornell.edu

30

https://github.com/defi-formal/cff
mailto:babel@cs.cornell.edu
https://github.com/defi-formal/cff
mailto:babel@cs.cornell.edu

Appendix

Time (in seconds)

Execution and proving times

e CPUTime ° o
5000 - Wall Time
4000 - .
& .
3000 - ¢ ®
[l .:
2000 - N
. L]
. &9
o 3°™
1000 -
oﬁ"‘h
0 - ot
0 20000 40000 60000 80000 100000

Transaction Count

Time (in Seconds)

CFF Parallelism using Multiple Threads

—&— 7 Transactions
8 Transactions
-+ 9 Transactions

-

20 40 60 80 100
Number of Worker Threads

32

Directions for Future Work

 MEV Definitions for Leaderless Protocols
* Arbitrary Symbolic Transaction Insertions

e Scaling the Backend

33

Under the Hood- Sushiswap + Uniswap

| claim <k>
On UniswapV2 697323163401596485410334513241460920685086001293 swaps for ETH by providing
<~ 1300000000000000000000 COMP and 0 ETH with change 0 fee 1767957155464 ; 4_

o

3 _wn Sushiswap Miner swaps for ETH by providing Alpha:Int COMP and 0 ETH with change 0 fee«_;_

| On UniswapV2 Miner swaps for Alpha COMP by providing ETH fee 0 ;

5 ____________________________________|

6 => K

7 </k>

8 <S> (Sushiswap in COMP) |-> 107495485843438764484770 (Sushiswap in ETH) |-> 49835502094518088853633

> (UniswapV2 in COMP) |-> 5945498629669852264883 (UniswapV2 in ETH) |-> 2615599823603823616442 =>
«» ?S:Map </S>

9 .List => ?_

10 requires (Alpha >Int 0) andBool (Alpha <Int 10000000000000000000000) //10%%22

|] ensures ({?S[Miner in COMP]}:>Int <=Int 0) andBool ({?S[Miner in ETH]}:>Int <=Int 0)

150 -

MEV(in ETH)

125 -+

100 -

75 -

50 -

25 -

-500 500 1000 1500 2000 2500 3000 3500
Alpha * 1e-18

Under the Hood- Sushiswap + Uniswap

| claim <k>
On UniswapV2 697323163401596485410334513241460920685086001293 swaps for ETH by providing

~ 1300000000000000000000 COMP and 0 ETHnge 0 fee 1767957155464 ; <_

o

3 _wn Sushiswap Miner swaps for ETH by providin{ nt COMP and 0 ETH with change 0 fee«_;_

| On UniswapV2 Miner swaps for Alpha COMP by provriaing ETH fee 0 ;

5 ____________________________________|

6 => K

7 </k>

8 <S> (Sushiswap in COMP) |-> 107495485843438764484770 (Sushiswap in ETH) |-> 49835502094518088853633

> (UniswapV2 in COMP) |-> 5945498629669852264883 (UniswapV2 in ETH) |-> 2615599823603823616442 =>
«» ?S:Map </S>

9 .List => ?_

10 requires (Alpha >Int 0) andBool (Alpha <Int 10000000000000000000000) //10%%22

|] ensures ({?S[Miner in COMP]}:>Int <=Int 0) andBool ({?S[Miner in ETH]}:>Int <=Int 0)

150 -

MEV(in ETH)

125 -+

100 -

75 -

50 -

25 -

-500 500 1000 1500 2000 2500 3000 3500
Alpha * 1e-18

Under the Hood- Sushiswap + Uniswap

| claim <k>
On UniswapV2 697323163401596485410334513241460920685086001293 swaps for ETH by providing

«~ 1300000000000000000000 COMP and 0 ETHnge 0 fee 1767957155464 ; <_

o

3 _wn Sushiswap Miner swaps fo « prov1d1n nt COMP and 0 ETH with change 0 fee«_;_

4 On UniswapV2 Miner swaps fo COMP by provIaing ETH fee 0 ;

5 |

6 => K

7 </k>

8 <S> (Sushiswap in COMP) |-> 107495485843438764484770 (Sushiswap in ETH) |-> 49835502094518088853633

> (UniswapV2 in COMP) |-> 5945498629669852264883 (UniswapV2 in ETH) |-> 2615599823603823616442 =>
«» ?S:Map </S>

9 .List => ?_

10 requires (Alpha >Int 0) andBool (Alpha <Int 10000000000000000000000) //10%%22

|] ensures ({?S[Miner in COMP]}:>Int <=Int 0) andBool ({?S[Miner in ETH]}:>Int <=Int 0)

150 -

MEV(in ETH)

125 -+

-500 500 1000 1500 2000 2500 3000 3500
Alpha * 1e-18

