
DRAFT PREPRINT

Lightweight, Modular Verification for WebAssembly-to-Native Instruction Selection

Alexa VanHattum1, 2, Monica Pardeshi3, Chris Fallin4, Adrian Sampson1, and Fraser Brown3

1Cornell University
2Wellesley College

3Carnegie Mellon University
4Fastly

Abstract
Language-level guarantees—like runtime isolation for We-

bAssembly (Wasm) modules—are only as strong as the com-
piler that produces a final, native-machine-specific executable.
The process of lowering language-level constructions to ISA-
specific instructions can introduce subtle bugs that violate se-
curity guarantees. In this paper, we present VeriISLE, a system
for lightweight, modular verification of instruction-lowering
rules within Cranelift, a production retargetable Wasm code
generator. We use VeriISLE to verify lowering rules that cover
WebAssembly 1.0 support for integer operations in the ARM
aarch64 backend. We show that VeriISLE can reproduce
3 known bugs (including a 9.9/10 severity CVE), identify
2 previously-unknown bugs and an underspecified compiler
invariant, and help analyze the root causes of a new bug.

1. Introduction
WebAssembly [36] (Wasm) is a portable bytecode format orig-
inally designed for the browser, with three main goals: safety,
speed, and portability. Wasm’s machine-independent but low-
level semantics make compilation and execution fast on any
platform; its type system and bounded memory regions work
together to prevent programs from reading or writing data
outside of their own heap (their sandbox). This isolation guar-
antee is essential when users interact with the web, because
each click leads to untrusted code.

Isolation has made Wasm popular beyond the web, too.
Edge cloud services from Cloudflare [43], Vercel [71], and
Fastly [61], for example, run users’ Wasm code on geograph-
ically distributed content delivery networks. To improve
startup time, these Wasm-based services can co-locate differ-
ent untrusted code modules within the same process; Wasm’s
lightweight isolation enforcement takes the place of more
traditional, costly process- or VM-based isolation.

Unlike a process or VM, however, Wasm’s safety guarantee
relies on the correctness of the underlying compiler. The com-
piler inserts dynamic checks that confine a module to its own
memory region before generating native code for that module.
Code generation, then, is a pillar of every Wasm-backed sys-
tem’s trusted compute base: almost any miscompilation, how-
ever seemingly benign or rare, could be exploited to produce
code that bypasses Wasm’s security guarantees [31, 24, 22, 23].

Code generation bugs can let malicious Wasm code steal data
from—or corrupt the execution of—completely unrelated mod-
ules or the host runtime itself.

As one example, a code generation CVE1 in Cranelift [17],
a compiler backend used in several industrial Wasm runtimes,
permitted this kind of sandbox escape [25]. The bug was in
Cranelift’s x86-64 instruction selection, which uses address-
ing modes to implement complex address computations with a
single instruction. x86-64 addressing modes can apply small
left shifts, so a single movl instruction is enough to implement
code like the following Wasm snippet:

1 (i32.load (i32.shl (local.get x) (i32.const 3)))

To lower this code to x86-64, Cranelift must convert 32-bit
Wasm addresses into offests from an instance’s base address
in the target machine’s 64-bit address space. This conversion
requires zero-extending the 32-bit Wasm address, computing
the 64-bit address as base+zext(addr) (where addr is the
original 32-bit Wasm address, base is the base address for
the module’s memory region, and zext is a zero-extension).
Unfortunately, the Cranelift instruction selector lowered the
above Wasm code to x86-64 instructions that computed base

+zext(x)<<3 instead of base+zext(x<<3). This mistake
lets attackers break out of the Wasm sandbox by giving them
access to an extra 3 significant bits of native address space. In
Wasmtime [18], a popular Wasm engine that uses Cranelift,
this allows a guest Wasm instance to silently read and write
memory 6 to 34 GB away from its own sandbox. Clearly,
even simple bugs in instruction selection can create security
vulnerabilities.

Instruction selection is hard to get right because it bridges
the (large) semantic gap between the compiler’s intermedi-
ate representation (IR) and the processor’s instruction set ar-
chitecture (ISA). While some instruction-lowering rules are
simple—essentially one-to-one translations from an IR con-
struct to an equivalent ISA instruction—others are not. They
perform complex transformations to eke out instruction-level
performance improvements; account for operators that exist
in either the IR or the ISA—not both; and select different
ISA instructions based on details of IR operations (e.g., their

1“Common Vulnerabilities and Exposures”, a designated list of publicly
disclosed security bugs.

bit-widths).
To help compiler developers automatically reason about

the correctness of their instruction-lowering rules, we present
VeriISLE. VeriISLE verifies rules written in Cranelift’s ISLE
domain-specific language (DSL) for specifying how IR terms
translate to machine code sequences. To use VeriISLE, de-
velopers annotate their ISLE lowering rules with specifica-
tions; VeriISLE uses a Satisfiability Modulo Theories (SMT)
solver [11] to automatically verify full functional equivalence—
i.e., that a rule translates an IR instruction to a native code
sequence with equivalent semantics. VeriISLE allows devel-
opers to gradually annotate new rules, and to quickly update
annotations as rules evolve. This modularity is essential be-
cause Cranelift is an evolving production compiler: lower-
ing rules—and entire backends!—are subject to change. To
our knowledge, our work with VeriISLE is the first formal
verification effort for the instruction-lowering phase of an
efficiency-focused production compiler.

In sum, in this paper, we:
1. Create VeriISLE, a framework for verifying instruction-

lowering rules in ISLE.
2. Verify Cranelift’s implementation of all integer operations

in the latest major WebAssembly release—1.0 [66]—for
the ARM aarch64 Instruction Set Architecture (ISA).

3. Use VeriISLE to reproduce and detect previously-fixed
bugs (§4.3.3) and vulnerabilities (§4.3.1), including the
example bug from this section.

4. Use VeriISLE to help Cranelift developers identify (§4.4.1,
§4.4.2) and fix (§4.4.4) new bugs and under-specified com-
piler invariants (§4.4.3).

We begin by introducing background on instruction lowering
and the ISLE DSL (§2.1). Then, we present VeriISLE’s design
(§3), and evaluate its results on Cranelift (§4), a production
Wasm compiler backend. Finally, we discuss plans to build on
VeriISLE towards fully-verified Wasm compilers (§6).

2. Background
This section provides background for understanding VeriISLE
verification (§3) by describing the instruction lowering prob-
lem (§2.1) and Cranelift’s ISLE domain-specific language
(DSL) for writing lowering rules (§2.3). Finally, it introduces
SMT solvers [11], the tools that power the VeriISLE verifica-
tion engine (§2.4).

2.1. Instruction Lowering

During instruction lowering, an instruction selector translates
the compiler’s intermediate representation (IR) to machine
instructions. The instruction selector’s job is to search for a
combination of machine instructions that (1) matches the IR’s
semantics and (2) performs well. A single-pass selector that
emits a fixed set of instructions for every IR operator fulfills
the first goal but not the second: it allows translations of one
IR instruction to N machine instructions, but not more effi-
cient N-to-M translations. This design, for example, precludes

compiling a program with addition and multiplication oper-
ations to machine code that uses a fast multiply-add (madd)
instruction.

Most modern instruction selectors do support more general
N-to-M matching; in fact, a good instruction selector often
embodies a good pattern matcher. It detects arrangements of
multiple operators in the IR that can be translated, together,
into machine instructions. In full generality, this is an NP-hard
combinatorial search problem; as a result, most production
compilers use heuristic shortcuts for practicality (e.g., greedy
pattern matching, as in the “maximal munch” scheme [20]).

More complex ISAs and ISA extensions yield more complex
matching strategies. For an extreme example, bit-permutation
and swizzling instructions vary widely across ISAs, and low-
ering of a general permutation operator sometimes requires
a “solver”—or at least a bevy of heuristic special cases
to produce good code [65, 55, 70]. This is part of what
makes instruction selection (and instruction selection veri-
fication!) interesting: it is not simply the task of mapping
mostly-equivalent operators, like translating IR addition to
the machine’s integer addition instruction. The most subtle
reasoning—and many bugs—occur when there is a large se-
mantic gap between the IR and ISA, and when producing
efficient machine code is a first-order priority [75, 53].

Production compilers today use a mix of hand-written and
DSL-based descriptions of their instruction lowering rules:
e.g., LLVM [46] has a 46K-line C++ file specifying x86-64

lowerings, while the Go compiler uses a term-rewriting DSL
where developers can specify expression-tree patterns [35]. In
this paper, we focus on the Cranelift compiler’s lowering DSL.

2.2. The ISLE lowering DSL

The Cranelift compiler project [17] introduced the ISLE
(Instruction Selection Lowering Expressions) DSL [32, 3, 33]
in 2021 in order to replace handwritten instruction-lowering
code with declarative patterns. ISLE is broadly a term-
rewriting system [29, 72]. In the next sections, we give a
brief overview, and then walk through an example of instruc-
tion lowering in ISLE.

2.2.1. ISLE’s term rewriting for lowering

The main body of a program in ISLE consists of a series of
rules. These rules are written in S-expression syntax and con-
sist of a left-hand side (LHS) and right-hand side (RHS). The
LHS is a pattern, and can use pattern-matching operators such
as wildcards, variable captures, or destructuring (matching a
term and then feeding its arguments to sub-patterns). The RHS
is an expression consisting of a tree of terms, possibly using
variables captured from the LHS. A rule indicates that the
RHS expression is produced whenever the instruction selector
encounters a term tree matching the LHS.

To express instruction lowering as term rewriting, ISLE
introduces a top-level term lower that takes an expression
tree as its argument. For example, to lower an integer add

2

operator (iadd) to the add instruction in the ISA (e.g., x86
-64 or aarch64), one would write:2

1 (rule (lower (iadd ty x y)) (isa_add ty x y))

where iadd is defined in Cranelift IR and isa_add is de-
fined amongst all available machine instructions in the ISA.

ISLE has a strict, static type system that operates on types
defined in ISLE (some of which are external, Cranelift-defined
types, such as Rust enums for instructions’ opcodes). Nested
terms on both the left- and right-hand sides must type check
(i.e., with return and argument values aligned). In addition,
the left- and right-hand side of a rule must have the same type.

Because of the type system’s restrictions, Cranelift
expresses all lowerings as rewrites from (lower (

IR_operator ...)) to term trees representing machine
code expressions, potentially passing through multiple inter-
mediate terms. The term lower is necessary because the LHS
and RHS of a rule must have the same type—but top-level
LHS patterns return IR Insts, while top-level RHS expres-
sions return machine Registers. lower, with type signature
(decl lower (Inst)Reg),3 does the Inst to Register con-
version that allows lowerings rules to type check by giving the
LHS and RHS the same type.

Finally, ISLE’s type system supports automatic type conver-
sions. In the iadd example, such conversions apply to x and
y, which are variables of type Value bound by the left-hand
side of the rule. The RHS, in contrast, operates on x and y

Registers. To reconcile these incompatible types, the ISLE
compiler automatically inserts type conversions if a conversion
rule has already been specified for a pair of types. In this case,
ISLE wraps the latter uses of x and y with the user-defined
term put_in_reg, which converts Values to Regs.4

2.3. ISLE by example: lowering rotations

In this section, we walk through Cranelift’s lowerings for a few
specific instructions; this sets us up to verify such lowerings in
the next section (§3).

Consider the Wasm rotl and rotr (“rotate”) binary nu-
meric instructions, which shift the bits of a value left or right
with wraparound. Cranelift has corresponding rotl and rotr

IR operations. The ARM aarch64 ISA has a single imple-
mentation of rotate—ROR—which has a corresponding ISLE
term named a64_rotr that includes an additional parameter
to specify the 64-bit or 32-bit variants of the instruction.

A simple attempt at lowering rotr instructions to the ARM
aarch64 backend might look like this:

1 (rule

2 (lower (rotr x y))

3 (a64_rotr I64 x y))

This rule lowers to the 64-bit variant (I64) of a64_rotr. It
works properly for 32- and 64-bit values, but not for narrower

2Slightly simplified for clarity; real rules differentiate on the values’ types.
3We elide an indirection via another type for clarity.
4We describe the semantics of put_in_reg in §3.1.2.

values (e.g., 8-bit values). This is because Cranelift operates
on narrow values of w bits by placing them in 64-bit registers
but considering only their lowest w bits to be meaningful. To
see how the above rule is broken for 8-bit values, imagine it
matching in a situation where x is #b00000001. Placing this
value in a 64-bit register and attempting to right-shift it by
one moves the right-most 1 bit to the highest bit of 64—not
the expected result of 64 bits with #b10000000 as the lowest
eight!

Cranelift must instead special-case on narrow values:

1 (rule

2 (lower (has_type (fits_in_16 ty) (rotr x y)))

3 (small_rotr ty (zext32 x) y))

This rule uses external helper terms has_type and
fits_in_16 to predicate this rule only on narrow types; if ty
is larger than 16-bits, the rule will not match. The helper terms
are defined externally from ISLE, in Rust code that returns
the value’s type (has_type) and checks the type against the
integer sixteen (fits_in_16), respectively. This rule also
abstracts over types (lowering the burden on the compiler en-
gineer): the rule binds a new variable, ty, to the type of the
return value of rotr, and passes ty through as an argument
to the right-hand side.

The rotate rule also uses an intermediate term, small_rotr
. small_rotr only ever exists in ISLE—not in the resulting
machine code—and is an intermediate step along the path to
a final machine code representation. Intermediate terms like
small_rotr let developers share logic across many different
rules. As one example, Cranelift’s rotl (rotate left) rule for
narrow inputs also uses small_rotr. The compiler uses a
small_rotr with a negated rotate amount because ARM does
not have a distinct rotate left instruction:

1 (rule

2 (lower (has_type (fits_in_16 ty) (rotl x y)))

3 (let ((neg_amt Reg (a64_sub I32 (zero) y)))

4 (small_rotr ty (zext32 x) neg_amt)))

This rule is the same as the previous one with two additions.
First, it uses a let clause to include another ISA instruction:
an ARM a64_sub subtraction instruction, negating the value y
by computing 0−y. Second, the rule wraps x on the right-hand
side with a call to zext32, which zero-extends (that is, left-
pads with zeros) the value of x up to 32 bits. Finally, to lower
small_rotr to ISA-level operations, the Cranelift ISLE rules
specify that narrow rotates can be composed of aarch64-
native left shift and right shift instructions (not pictured). Thus,
these ISLE rules lower a single IR instruction to multiple
machine code instructions (a64_sub followed by shift and
bitwise or instructions).

2.4. Satisfiability Modulo Theories (SMT)

To verify lowering rules written in ISLE, VeriISLE uses an
SMT solver [28]. SMT solvers are tools that determine
whether logical formulas are satisfiable for some assignment

3

of values to variables.
Unlike SAT formulas [56], SMT formulas allow users to

express higher-level statements (e.g., “x < y[2]”) using a
rich set of operators and types (e.g., integers and arrays) that
are defined in the SMT-LIB standard [11]. VeriISLE lowers
ISLE rules to SMT formulas in the theory of bitvectors and
integers; we discuss this further in the next section.

3. VeriISLE Design
VeriISLE is a framework for verifying rewrite rules in the
ISLE domain-specific language for instruction selection. Veri-
ISLE uses an SMT solver [28] to show functional equivalence
of the left- and right-hand sides of individual rules.5 An equiv-
alent left and right side mean that the rule has preserved IR
semantics at the machine-code level; a differing left and right
side indicate a bug in the lowering.

To verify their lowering rules, compiler developers write
annotations on ISLE terms in VeriISLE’s annotation language
(§3.1). This language makes it simple to express term seman-
tics (e.g., that fits_in_16 means that a type can losslessly
be represented with 16 bits). VeriISLE consumes ISLE’s pro-
gram representation for rules, combines this with the compiled
annotations to create its own intermediate representation, and
performs type inference (§3.1.3). Type inference is necessary
for VeriISLE to lower its IR to an SMT formula, a logical
formula that asks whether a rule’s right and left-hand sides are
equivalent. Finally, VeriISLE feeds the resulting formula into
the SMT solver. If the right and left-hand sides of a rule differ,
the solver returns a counter-example showing a set of inputs
that cause the divergence; otherwise, the rule is verified.

In this section, we walk through the verification pipeline,
from VeriISLE’s annotation language (§3.1) to how it con-
structs and customizes verification conditions (§3.2).

3.1. The annotation language

It is impossible to verify functional correctness without precise
semantics on terms within ISLE. While there are formal se-
mantics for certain ISAs (e.g., ARM [4] and Intel [27]), there
are no semantics for Cranelift’s intermediate representation—
or for ISLE helper terms (e.g., has_type) and intermediate
terms (e.g., small_rotr). The challenge in specifying these
semantics is that production compilers are living software:
engineers change rules, add rules, and occasionally add entire
new back-ends. To support modular verification of an evolv-
ing codebase, VeriISLE introduces an annotation language
that allows rule authors to define specifications as they go,
introducing a term’s semantics inline, next to the term itself.

For example, consider our VeriISLE annotation on the
helper term fits_in_16:6

1 (spec (sig (args arg) (ret))

5Though VeriISLE supports more general custom verification conditions,
as we will describe later in this section.

6ISLE terms and specification syntax lightly edited for clarity and brevity.

〈annot〉 ::= (‘spec’ 〈sig〉 (‘provide’〈ex〉+) (‘require’〈ex〉+))

〈sig〉 ::= (‘sig’ (args 〈bound〉+) (〈bound〉))
〈bound〉 ::= (〈ident〉 ‘:’ 〈type〉)
〈type〉 ::= ‘bv’ | ‘bv’ 〈int〉 | ‘Int’ | ‘Bool’

〈width〉 ::= 〈int〉 | 〈ex〉
〈const〉 ::= ‘true’ | 〈int〉 | ...

〈ex〉 ::= 〈ident〉 | 〈const〉 | 〈encoding〉 〈ex〉+
| (〈unop〉 〈ex〉) | (〈binop〉 〈ex〉 〈ex〉)
| (〈conv〉 〈width〉 〈ex〉) | (‘extract’ 〈int〉 〈int〉 〈ex〉)
| (‘int2bv’ 〈width〉 〈ex〉) | (‘bv2int’ 〈ex〉)
| (‘widthof’ 〈ex〉) | (‘concat’ 〈ex〉+)
| (‘if’ 〈ex〉 〈ex〉 〈ex〉) | (‘switch’ 〈ex〉 (〈ex〉 〈ex〉)+)

〈unop〉 ::= ‘!’ | ‘~’ | ‘-’ | ...

〈binop〉 ::= ‘+’ | ‘-’ | ‘=’ | ‘<=’ | ...

〈conv〉 ::= ‘sign_ext’| ‘zero_ext’ | ‘convto’

〈encoding〉 ::= ‘cls’ | ‘clz’ | ‘rev’ | ‘subs’ | ‘popcnt’

Figure 1: VeriISLE’s annotation language, which combines SMT-LIB
constructs with conveniences (e.g., switch) and VeriISLE-specific
constructs (e.g., convto and widthof).

2 (provide (= ret arg))

3 (require (<= arg (16:Int))))

4 (decl fits_in_16 (Type) Type)

This specification says that fits_in_16 is a partial identity
function on the argument type Type—that is, for the arguments
on which fits_in_16 is defined, it returns the argument itself.
The function is specified by the provide clause (= ret arg

), which sets the return value equal to the first argument;
both variables are bound in the spec signature. require
clauses specify a preconditions on the term. This precondition
specifies that the rule is a partial function predicated on (<=

arg (16:Int))—the fact that the argument, which VeriISLE
maps to the SMT-LIB theory of integers, is less than or equal to
16. In ISLE, partial functions are used to determine whether a
rule matches: if any term on the left-hand side is undefined, the
rule does not match. In sum, these three lines of specification
are enough to describe the semantics of fits_in_16: it is a
partial identity function that returns the type argument arg,
which matches if arg is under sixteen bits.

3.1.1. The annotation language grammar and semantics

Figure 1 shows the VeriISLE annotation language grammar.
Most operations in the annotation grammar map directly to
SMT-LIB constructions. For example, + applied to a bitvector
maps to SMT-LIB’s bvadd bitvector addition function.

VeriISLE adds conveniences like switch and a variadic
concat operation, both of which desugar to folding SMT-
LIB’s fixed-argument ite (if-then-else) and concat (bitvec-
tor concatenation) operators over any number of arguments.
switch also adds a verification condition that enforces that
its branches are exhaustive, which has helped surface faulty

4

annotations.
VeriISLE provides constructs for introspecting on and mod-

ifying bitvector widths. widthof returns the width—often
only known directly at solving time (§3.2)—of a given bitvec-
tor value. convto changes the width of its bitvector argument
with the following semantics: if the destination width is more
narrow, convto extracts the relevant bits; if the destination
width is wider, convto leaves the upper bits unspecified by
concatenating a fresh SMT variable with unrestricted bits.

VeriISLE also provides higher-level versions of SMT-
LIB constructs. For example, SMT-LIB rotates must have
statically-provided widths; VeriISLE instead offers symbolic
rotates, which it implements with shift and bitvector logic
instructions. Finally, VeriISLE includes keywords that map
to custom encodings in its backend: (1) cls and clz, which
count the number of leading sign and zero bits, respectively
(§4.3.3), (2) rev, which reverses the order of bits, (3) subs,
which performs subtraction-with-flags, and (4) popcnt, which
counts the number of 1 bits.
provide blocks specify the semantics of a term, typically

by relating the returned value bound in the specification to
one or more of the arguments. require blocks specify pre-
conditions, which are assumed when a term is used on the
left-hand side of a rule but checked—that is, verified to hold—
when a term is used on the right-hand side of a rule. This is
analogous to more traditional Hoare-style verification [38, 9],
where function preconditions may be assumed within the body
of a function but must be checked at function call site.

For example, small_rotr requires that the amount being
rotated has been zero-extended from the narrow starting width
to the full 64 bits of the register. This can be specified as:

1 (require (switch (ty)

2 ((8:Int) (= (extract 63 8 x) (0:bv)))

3 ((16:Int) (= (extract 63 16 x) (0:bv)))))

This require clause say that the type ty is 8 or 16, and that
the relevant bits beyond index ty have been zero-extended.
This must be proven true for a term that uses small_rotr on
the right-hand side, but is assumed true for terms that rewrite
from a small_rotr on the left-hand side.

3.1.2. The annotation language type system

Types in VeriISLE are integers, booleans, and bitvectors. The
VeriISLE annotation language must support polymorphism
over bitvector widths, since most of Cranelift’s ISLE rules
operation on its Value type, which is polymorphic over integer
values in the Cranelift intermediate representation. (§2.3).

For example, during preprocessing, ISLE automatically
inserts put_in_reg to implicitly convert Cranelift IR Values
to machine code Regs—and because Values vary in width,
VeriISLE’s annotation language must provide a polymorphic
type signature to put_in_reg. In other words, put_in_reg
must reconcile the potentially narrow Value with the 64-

bit Reg. VeriISLE’s put_in_reg annotation uses convto to

reinterpret the polymorphic bitwidth of the argument as 64
bits:

1 (spec (sig (args arg) (ret))

2 (provide (= (convto (64:Int) arg) ret)))

3 (decl put_in_reg (Value) Reg)

3.1.3. Type inference

The annotation language supports polymorphism over bitvec-
tor types, but its target representation does not: all bitvector
operations in SMT-LIB operate on fixed-width bitvectors [60].
Therefore, VeriISLE must transform its high-level intermedi-
ate representation, which allows polymorphic bitvector types,
into several SMT formulas, each over a different set of bitvec-
tor widths. VeriISLE uses two passes of type inference to
determine those widths. The first inference pass produces an
assignment of SMT types (e.g., bitvector) for each variable
in a term or its specification. The second pass resolves the
bitvector widths.

First pass First, VeriISLE runs a variant of classic
unification-based type inference [54] in order to rule out type
errors between annotations. This first pass yields an SMT
type (kind)—either an integer, boolean, or bitvector—for each
variable in both the specification and the term it describes. The
first pass, however, does not necessarily resolve the width of
each bitvector.

VeriISLE is not always able to resolve types via the first
unification pass because types in ISLE are polymorphic at the
time ISLE generates Rust for code generation (e.g., the type
Value does not have a specific width when ISLE is being pro-
cessed). For example, the width of the value of small_rotr
depends on the value of an argument passed in, ty. Thus,
VeriISLE finishes resolving bitwidths in a second typing pass.

Second pass During the second type inference pass, Veri-
ISLE uses an SMT solver to resolve unknown bitvector widths.
This pass takes terms and their specifications as input, along
with the types that the first inference pass resolved. It models
bitvectors as an over-approximation of their width (i.e., with
bitwidth 64) and uses integer SMT variables to model the
widths of each subexpression.

For each rule, we provide a set of possible type instantia-
tions for the root left-hand side term (that is, a set of pos-
sible types for the argument and return values, based on
Cranelift semantics). For example, for a simple Cranelift
IR type such as iadd, the set of type instatiations is (t, t)→
t for t in {i8, i16, i32, i64} (e.g., (i8, i8)→ i8).

For a more complicated term that involves modifying the
Cranelift IR width of the input and output, we consider a wider
set of instantiations. For example, for extending values, we
consider multiple output types per argument type:

s→ d
for s in {i8, i16, i32, i64}

for d in {i8, i16, i32, i64} if d ≥ s

5

Most terms on the right-hand side of Cranelift’s ISLE rules
operate on types modeling registers, instead of values in the
intermediate representation. Cranelift’s invariant for narrow
types placed in registers is that low bits are defined and high
bits are undefined, so we encode registers as 64-bit bitvectors
with potentially-unspecified high bits.

For most rules, this second pass produces a single possible
type assignment. For some rules, there are multiple valid
type assignments—in this case, we continue the verification
process until the SMT solver says there are no more unique
possible type assignments (similar to counter-example guided
inductive synthesis [1]).

3.2. Generating verification conditions

Once VeriISLE has run type inference—yielding a low-level,
typed intermediate representation—it can lower that represen-
tation to an SMT formula(s) that expresses equivalence of the
right and left-hand sides of a lowering rule. When VeriISLE
invokes the solver on the formula, there are three possible
outcomes:
1. Success: the rule is verified.
2. Failure with counterexample: the rule is broken,

and the solver provides a set of inputs that exposes the
bug, formatted in ISLE surface syntax.

3. Rule inapplicable: for the given type instantiation, the
rule does not match. This indicates that the rule contains
predicates on the left-hand side—or guarded if/if-let
clauses (see §4.4.4)—such that the rule never matches on
this type instantiation.

To produce these 3 outcomes, VeriISLE uses (at least) two ad-
ditional SMT queries. The first query determines if the rule is
applicable by querying the solver to see if there exists a model
in which all the necessary preconditions hold; if not, VeriISLE
produces a Rule inapplicable result. The second query
determines whether the lowering rule preserves equivalence; if
so, Success, and if not, Failure with counterexample.

For each query, VeriISLE’s formula for a given rule com-
bines the semantics and preconditions of Cranelift IR terms,
ISA terms, and external and intermediate terms—all provided
by annotations—with the semantics of the ISLE language it-
self (e.g., if-let and other language constructs). VeriISLE
combines semantics across term annotations via a recursive
descent over the rule’s RHS and LHS, equating corresponding
arguments and return values.

3.2.1. The first query: applicability

Let i0 . . . in−1 be input variables in the LHS of a rule, ALHS be
the set of SMT variables generated by the recursive descent
on the LHS (and analogously RHS), PLHS and RLHS be the set
of provide and require predicates in all annotations on the
LHS (and analogously RHS). A rule is applicable if there are
some inputs such that the LHS and RHS are both defined:

∃{i0, . . . , in−1} ∪ ALHS ∪ ARHS|PLHS ∧ RLHS ∧ PRHS (1)

Recall that this query does not ask about equivalence; it asks
whether the rule applies at all, to at least one input. Includ-
ing the RHS SMT variables (ARHS) and provide expressions
(PRHS) in this initial query helps catch overly restrictive anno-
tations. For instance, a vacuously false assertion in a provide
annotation on the RHS should make the rule fail the applicabil-
ity check (otherwise, the next step would be unable to find any
counterexamples—because in first order logic, false implies
anything). Including PRHS in the query makes such a rule fail
at the applicability check.

The optional model distinctness check The applicability
check succeeds as long as at least one assignment of input
terms is applicable—even if there is just one set of applicable
inputs. VeriISLE implements an optional check that looks
for distinct input sets (i.e., checks that multiple SMT models
are feasible in which every bitvector input term is distinct).
VeriISLE creates a formula that asserts that each bitvector
input differs from the one in the original model; if the query
is unsatisfiable, there is only one set of matching inputs. This
check identified a previously unknown bug where an ISLE
rule never fired in practice (§4.4.2).

3.2.2. The second query: equivalence

If the first query succeeds, VeriISLE constructs another SMT
query to determine equivalence. Let retLHS be the value re-
turned by the outermost LHS term and retRHS be the value
returned by the outermost RHS term. A rule is correct if as-
suming (1) the semantics of the LHS and RHS terms and (2)
preconditions of the LHS implies (1) the equivalence of the
LHS and RHS and (2) preconditions on the RHS terms:

∀{i0, . . . , in−1}∪ALHS∪ARHS|
(PLHS∧RLHS∧PRHS)⇒ (retLHS = retRHS)∧RRHS (2)

To convert this statement to an SMT query, VeriISLE plays
the standard trick of asking if there are counterexample inputs
such that the verification conditions do not hold (by switching
the quantifier to an existential and negating the implication).

Verification conditions for narrow widths ISLE’s type
system itself conveys to VeriISLE which bits are demanded
to produce the right verification conditions. For many rule
and type instantiation pairings, the expression retLHS (the
returned value from the outermost LHS term) has a width
narrower than 64 bits. The RHS, however, typically operates
on register-width values with 64 bits. In such cases of mis-
matched widths, the condition VeriISLE verifies aligns with
Cranelift IR’s intended invariant: that the lower bits of the
register are equivalent to the Cranelift IR semantics on the
narrow width. We implement this condition in VeriISLE by
adding an annotation on the output_reg term, which the
ISLE preprocessor inserts as an automatic type conversion:

1 (spec (sig (args arg) (ret))

2 (provide (= ret (convto (widthof ret) arg))))

6

3 (decl output_reg (Reg) InstOutput)

The convto in this annotation narrows the bits of Reg

in consideration to the bit demanded by the width of the
InstOutput (which models the potentially narrow Cranelift
IR type).

Optional custom verification conditions and assumptions
Some compiler transformations intentionally break strict
equivalence. For example, Cranelift attempts to rewrite com-
parisons that include a statically-known argument to pre-
fer an even integer immediate: as a mathematical identity,
A ≥ B+ 1→ A− 1 ≥ B→ A > B. This rewrite is profitable
because even values are more likely to fit in ARM64’s 12-bit
immediate encodings, improving code size.

The rule that implements this identity is closely tied to
how comparisons are emitted to machine code. On ARM,
comparisons are done by a subtraction-with-flags and then
comparing those flags again the condition code for the specific
comparison (in this example, ≥ vs >). The relevant rule acts
on terms that that produce the ISLE type FlagsAndCC, rather
than a boolean value directly. Since the mathematical identity
changes the values of both the flags and the condition code,
VeriISLE reports a verification failure on this and similar rules.

Optionally, users can run VeriISLE with custom verification
conditions instead of checking strict bitvector equality of the
LHS and RHS. In this case, VeriISLE can encode the logic
that flattens flags and a condition code into a boolean in order
to prove that the boolean result of the comparison maintains
equivalence. Users can also provide VeriISLE with additional
assumptions on input values, which we use to encode cases
where a rule would not match due to ISLE’s priority semantics.

3.3. Implementation and trust model

VeriISLE is implemented 15,825 lines7 of Rust as a fork of
the Wasmtime codebase.8 We run VeriISLE queries as a Rust
test suite in continuous integration on our Wasmtime fork.
VeriISLE is designed to be useful to compiler engineers who
are not experts in verification tooling; VeriISLE lifts coun-
terexamples from the SMT model back into ISLE syntax to
make debugging easier. VeriISLE can also test rules against
specific concrete inputs (i.e., run as an interpreter), allowing
developers to test their annotations against their expectations
(and paving the way for future work in fuzzing VeriISLE’s
annotations).

Caveats and the trusted code base VeriISLE is limited to
reasoning about individual rewrite rules written in ISLE; it
reasons about correctness in instruction lowering itself, but
trusts other passes in the Cranelift compiler and Wasm runtime.
Cranelift and the Wasmtime engine invoke instruction selec-
tion after WebAssembly safety checks are inserted, but prior

7Plus 26,465 lines for our auto-generated annotation language parser.
8Forked at commit 9556cb1.

to a couple final compiler stages (e.g., register allocation).9

VeriISLE also trusts the semantics of ISLE terms as written in
the annotation language (though our provide and require
distinction and concrete tests help find bad specifications). For
example, we found that an old version of VeriISLE did not
require condition codes to fall into a valid range. Finally, Veri-
ISLE currently reasons about each rule individually. Support
for verifying properties over multiple rules (e.g., reasoning
about rule priorities) is future work.

4. Evaluation
This section answers the following evaluation questions:

Q1 Can VeriISLE be applied to a meaningful set of ISLE rules?
Q2 For test and benchmark suites for WebAssembly and Rust,

what proportion of invoked ISLE rules has VeriISLE veri-
fied?

Q3 Can VeriISLE reproduce prior, known Cranelift bugs?
Q4 Can VeriISLE help identify and fix new bugs?

We answer Q1 by verifying a natural subset of rules, those
necessary to compile integer computations in the latest major
release of WebAssembly (“1.0” [66]). Section 4.2 addresses
Q2—we find that the rules we verify comprise 19.8% of the
lowering rules invoked by the WebAssembly reference test
suite.

To answer Q3, we choose two previously-discovered CVEs
in ISLE rules (out of 14 Wasmtime CVEs, 10 of which do not
involve ISLE); we also select an ISLE bug that was not as-
signed a CVE because it affects non-Wasm types. We annotate
the buggy rules and present the counterexamples VeriISLE
produces in Section 4.3.

Finally, in Section 4.4 we address Q4, outlining 3 new
faults (2 patched) that VeriISLE discovered, and 1 compiler
mid-end bug that VeriISLE helped root-cause and patch. These
case studies highlight that instruction-lowering rules are error-
prone even for experienced compiler engineers: many of the
issues were subtle interactions between constants, sign- and
zero- extensions, and tricky bitwidth-specific reasoning. More-
over, to our knowledge, no new bugs have been discovered
by any other means (e.g., any Cranelift fuzzers [6]) in rules
verified by VeriISLE.

4.1. Is VeriISLE applicable to real rules?

We use VeriISLE to verify the instruction-lowering rules for
all integer operations10 from WebAssembly’s 1.0 release to
the ARM aarch64 backend. In addition, we verify most of
the new integer operations in WebAssembly’s 2.0 version,
which is currently in draft status [67]. We choose these rules
because WebAssembly uses integers for addressing computa-
tions, which means that logical issues in integer codegen can

9Cranelift also has a distinct symbolic translation validation checker for
register allocation; this shows how engineers can take an ensemble approach
to applying formal methods in a production setting.

10All operation defined under section “4.3.2 Integer Operations” of the
WebAssembly Specification Release, 1.0

7

Total Success Timeout Inapplicable Failure
Rules 96 84 (all types) / 93 (any type) 10 (any type) / 1 (all types) N/A 2 (0)
Type Instantiations 388 217 28 139 4 (0)

Table 1: Verification results for rules and type instantiations (because rules match on multiple possible types, potentially with different
verification results) for integer operations from WebAssembly 1.0 to Arm aarch64. Note that the failures all succeed with custom (rather than
bitvector equivalence) verification conditions.

lead to security vulnerabilities. We verify aarch64 rules be-
cause this backend is less well-tested than x86-64. The ARM
backend rules we do not verify fall into four categories: (1)
i128 types; (2) floating point; (3) SIMD (vector) instructions;
and (4) side effects and control flow. We discuss further in
Section 6.

Verification requires 182 total annotations (1075 LOC). For
some ISA terms, we modify or cross-reference formal seman-
tics from SAIL-ISLA [4, 5], a symbolic execution engine for
ISAs. For Cranelift IR and external Rust terms, we refer to
WebAssembly’s specification, Cranelift documentation, and
the external Rust definitions.

In total, our verification effort covers 96 distinct rules
with 388 type invocations, since each rule is tested against
1 to 10 possible type assignments. For most rules, we
consider all Cranelift-supported integers up to 64 bits (i.e.,
i8, i16, u/i32, and u/i64), though we note that We-
bAssembly 1.0 only supports 32-bit and 64-bit numbers.
rustc_codegen_cranelift, an alternative backend for
the Rust language, uses the narrower types VeriISLE sup-
ports [58, 10].

Table 1 shows the verification results for all 388 total type
invocations. Recall that the six verification failures do not
represent real bugs, since the context in which they are used
does not require bitvector equivalence. With custom verifica-
tion conditions, these rules verify successfully. 360 of the 388
invocations complete, in sum, within 5 minutes on a laptop.11

The 10 rules that timeout on some type instantiations contain
multiplication, division, remainder, and popcnt operations
on bitvectors, which are difficult for SMT solvers to reason
about for wider widths [40].12 Each of these rules fails with a
counterexample within 10 seconds if we inject a flaw in the
rule logic.

4.2. What proportion of invoked rules has VeriISLE veri-
fied?

We instrument Cranelift to determine, on various targets,
what proportion of invoked ISLE rules VeriISLE has veri-
fied. For the WebAssembly reference test suite, VeriISLE
verifies 19.8% (50/253) of the unique ISLE rules used dur-
ing compilation. (We use a version of the WebAssembly
specification’s test suite that corresponds to the language fea-
tures in Wasm 1.0, which notably excludes SIMD instruc-
tions.) To assess our coverage on integer types narrower than

11We run experiments on a MacBook Pro Apple M2 Max, 12-core CPU,
32GB RAM, macOS 13.2.1.

12Timed out after 6 hours, run in parallel with other tests.

those that Wasm supports, we repeat this experiment on the
rustc_codegen_cranelift test suite, an alternative back-
end for the Rust compiler that uses Cranelift as its code gen-
erator [58, 10]. Verified rules make up 15.8% (24/152) of
the unique ISLE rules used during compilation. These num-
bers will grow as we enhance VeriISLE to additional memory
operations and floating point (§6).

4.3. Can VeriISLE detect known bugs?

To answer our third question, we use VeriISLE to detect three
known, recent Cranelift bugs. We select these bugs for their
severity and because they occur in ISLE rules in scope for the
current version of VeriISLE.

4.3.1. x86-64 addressing mode CVE (9.9/10 severity)

In under one second on a laptop, VeriISLE detects a 2023 CVE
in x86-64 instruction lowering that permitted a WebAssembly
sandbox escape (§1) [25]. The reproduction requires 13 new
annotations to support terms in the x86-64 backend, which
we had not previously covered (§4.1).

The bug appeared in this ISLE rule:13

1 (rule

2 (amode_add (Amode.ImmReg off base)

3 (uextend (ishl x (iconst shft))))

4 (if (u32_lteq (u8_as_u32 shift) 3))

5 (Amode.ImmRegRegShift off base

6 (extend_reg x I64 (Extend.Zero)) shft))

This rule intends to take advantage of an x86-64 addressing
mode that allows shifts to be computed within the instruction
itself, before adding together address components. However,
the core problem with this rule (§1) is that the LHS performs a
shift on a 32-bit value (throwing away any bits that are shifted
left beyond 32 bits), while the RHS performs the shift on a
64-bit value (throwing away bits shifted left beyond 64 bits),
which lets the emitted shift modify bits beyond WebAssem-
bly’s effective address space.

To see how the problem manifests, we walk through the rule.
The outermost LHS term, amode_add, is an intermediate term
that earlier rules construct to model memory address computa-
tions that can be folded into addressing modes. The second ar-
gument of the match, (uextend ...), is a Cranelift IR value
that is a zero-extended (uxtend) shift operation (ishl) with
a statically known, constant shift amount (shft) (conceptu-
ally (i64.extend_i32_u (i32.shl <x> (i32.const <

shft>)))). The rule’s if clause checks that the shift amount,

13Lightly edited for brevity

8

shft, is less than or equal to 3. If all the above conditions
hold and the rule matches, it emits a single addressing mode
where the value x to be shifted is zero-extended, shifted by the
static shft amount, and added to the other components of the
computed address (base + off).

VeriISLE provides the following counterexample:14

1 (amode_add

2 (Amode.ImmReg

3 [off|#x30c04100] [base|#x0000000000000000])

4 (uextend

5 (ishl [x|#xd0000920] (iconst [shft|#x02])))) =>

6 (Amode.ImmRegRegShift

7 [off|#x30c04100]

8 (gpr_new [base|#x0000000000000000])

9 (extend_to_gpr [x|#xd0000920] I64 Extend.Zero)

10 [shft|#x02])

11

12 #x0000_0000_70c0_6580 =>

13 #x0000_0003_70c0_6580

In this counterexample, the 32-bit value x, #xd0000920, has
the most significant bit set. When x is shifted by the speci-
fied 2 bits to the left, the results differ on the LHS and RHS.
As expected, the LHS throws away the shifted bits after 32
bits (e.g., the higher 32 bits of #x0000_0000_70c0_6580 are
zero). However, the RHS does not throw away the shifted
bits after 32 bits, allowing non-zero bits beyond the expected
effective address space: #x0000_0003_70c0_6580!

The patch for this bug simply removes the rule entirely, so
we did not verify the patch with VeriISLE.

4.3.2. aarch64 unsigned divide CVE (moderate severity)

VeriISLE reproduces a 2022 CVE in aarch64 instruction low-
ering in which divides with constant divisors were miscom-
piled. In this case, trying to write annotations was enough to
highlight the root cause of the bug—that constant values, when
used as divisors, were not correctly sign- or zero-extended ac-
cording to signed or unsigned division.

The ISLE rules that matched on constant divisors for both
udiv and sdiv—unsigned and signed divide—used the term
imm on the RHS. imm models an immediate value that can
be encoded in a machine instruction itself, lowering both the
number of instructions and register pressure. At the time of
this CVE, the ISLE signature for imm was:

1 (decl imm (Type u64) Reg)

This term’s intention was to take the immediate’s value as a
u64 and place it in a register. When trying to annotate this term
and the terms for signed constant divisors, though, an issue
was immediately clear: imm provides no argument for whether
narrow values should be sign- or zero-extended. Annotating
zero-extension causes signed division to fail; choosing sign-
extension causes unsigned division to fail. In practice, the
external Rust implementation sign-extended, so the bug sur-

14Lightly edited for brevity.

faced in udiv instructions. The patched version of imm takes
in an argument for the type of extension, and the rules for
udiv and sdiv now successfully verify.15

4.3.3. aarch64 count-leading-sign bug

VeriISLE reproduces a pre-existing bug in the ISLE aarch64

lowering rule for cls, the instruction that counts the number
of leading sign bits in a value (excluding the sign bit itself).
The rule for narrow cls instructions must extend its input
values, since Cranelift IR supports operations on narrow types
like i8 and i16, while aarch64 only supports operations on
32- and 64-bit values. Unfortunately, the faulty version of the
rule failed to properly extend:

1 (rule

2 (lower (has_type I8 (cls x)))

3 (a64_sub_imm I32 (a64_cls I32 (zext32 x)) 24))

This rule matches on cls computations over 8-bit values. The
RHS extends 8-bit x to 32 bits using zext32, and then com-
putes a64_cls on this wider value. Finally, it subtracts 24
bits (32−8) to obtain the leading bit count on the narrow type.
VeriISLE reports the following counterexample:

1 (lower (has_type I8 (cls [x|#b11111100]))) =>

2 (output_reg

3 (a64_sub_imm I32

4 (a64_cls I32 (zext32 [x|#b11111100])) 24))

5

6 #b00000101 => #b11111111

In this counterexample, the LHS correctly computes that the
value #b11111100 has 5 leading sign bits (1), excluding the
sign bit itself. The RHS, however, zero-extends this value to
32 bits, then counts the new leading sign (0) to produce 23,
and subtracts 24 to produce -1. The amended version of the
rule uses a sign-extend instead of a zero-extend, and VeriISLE
verifies it successfully.

4.4. Can VeriISLE find new bugs?

This section outlines VeriISLE’s discoveries in Cranelift so
far: two bugs, both patched; a case of imprecise semantics;
and a root cause analysis.

4.4.1. Another addressing mode bug

VeriISLE discovered a new correctness bug in an x86-64

addressing mode rule related to the one discussed in §4.3.1
(which was not identified by Cranelift engineers even in a
subsequent close look at addressing mode rules). This rule
was identical except that it did not have an explicit uextend
(line 3 in §4.3.1)—the same bug could surface on a direct
load of a 32-bit address. Cranelift developers determined that
the bug would not be triggered in practice because on 64-bit
targets, all addresses should be 64-bit typed, and frontends
generate code in this form. However, nothing in the com-
piler backend validated this IR invariant and the bug could be

15Though as noted previously, VeriISLE times out on some wide divisions.

9

triggered if frontend implementations changed. Cranelift engi-
neers patched this issue immediately after we notified them of
VeriISLE’s result.

4.4.2. Flawed negated constant rules

VeriISLE found an issue where 3 rules were unintentionally
restricted to never fire in practice. This was a performance
issue—optimizations did not apply as often as they should—
but not a correctness issue. The three buggy rules all, in
various ways, attempted but failed to find small, constant argu-
ments that could be encoded in ARM’s imm12 encoding. This
is an optimization because it is an alternative to the more ex-
pensive option of using a separate load-immediate instruction.

This is one of the buggy rules VeriISLE discovered:

1 (rule

2 (lower (has_type (fits_in_64 ty)

3 (isub x (imm12_from_negated_value y))))

4 (a64_add_imm ty x y))

The imm12_from_negated_value term matches when the
second argument, after being negated, can be encoded into
ARM’s 12-bit immediate format. Matching negated constants
allows a wider range of numbers to be encoded as immediates:
around 8,000 constant values can be encoded in ARM’s imm12
(12 bits plus a shift bit)—checking for negated values as well
doubles the number of possible constants.

When run on this rule, though, VeriISLE warns that there
are no distinct models—the rule only matches one set of
input values. The issue is in the (external Rust) implementation
of imm12_from_negated_value:

1 Imm12::maybe_from((n as i64).wrapping_neg() as u64)

In Cranelift’s IR, all constant integers are represented with
Rust’s u64 type. This code takes the constant n’s underly-
ing u64 value, negates it, and checks if it fits into an Imm12

immediate. Unfortunately, for any width of integer narrower
than 64 bits, the only value this holds true for is zero! This is
because Cranelift has an informal invariant that when a nega-
tive narrow value is stored as a constant, its value should be
zero-extended—not sign-extended—into a u64 representation.
Negating (wrapping_neg) a zero-extended constant always
produces a 64-bit value with with left-filled ones, which will al-
ways fail the check Imm12::maybe_from because the highest
bits on the 64-bit value are set.

VeriISLE discovered that, while not incorrect, this rule was
useless—it never matched in practice. Our merged fix corrects
this rule to negate the narrow constant and then zero extend it.

4.4.3. Imprecise semantics for constants in Cranelift IR

VeriISLE also found that Cranelift had under-specified seman-
tics for integer constant representations in IR. While most
Cranelift front-ends zero-extend narrow constant values to 64
bits, VeriISLE found that Cranelift’s own parser for unit tests
sign-extends. The issue we filed is the site of ongoing dis-
cussion about enforcing clear semantics; since then, a fuzzer

discovered a bug in Cranelift’s mid-end optimizations caused
by the same imprecise semantics.

4.4.4. A mid-end root cause analysis

While we designed VeriISLE for ISLE’s lowering rules, we
have found that it can reason about backend-agnostic rewrites—
rewrites in the compiler “mid-end”—as well. In this case
study, VeriISLE identified the root cause of a new bug—a
boolean optimization rewriting false to true—before Cranelift
engineers identified it.

A Cranelift engineer ran Souper—a superoptimizer for
LLVM [57]—on a subset of Cranelift IR and discovered that
Cranelift was missing the boolean rewrite or(and(x, y),

not(y))== or(x, not(y)). To port this to ISLE, the engi-
neer wrote a new rule with an explicit guard to check the for a
bitwise-not between constants y and z:16

1 (rule

2 (simplify (bor (band x (iconst y)) (iconst z)))

3 (if (u64_eq zk (u64_not y)))

4 (bor x z))

This rule passed code review and was merged, but broke an
integration test with a wasm trap error that did not point to a
root cause. Before the Cranelift engineers were able to com-
plete a manual investigation, we extended VeriISLE analyze
this rule (e.g., added annotations for mid-end terms) in under
two hours. VeriISLE produced the following counterexam-
ple:17

1 (bor (band [x|#b1] [y|#b1]) (iconst [z|#b0])) =>

2 (bor [x|#b1] [z|#b0])

3 #b0 => #b1

VeriISLE surfaces a subtle bug related to the semantics of
ISLE’s if construct. Recall that terms in ISLE are partial
functions. The semantics of ISLE’s terms with external Rust
implementations are that a match should continue if the return
value is Some(...) and should not match if any LHS term
returns None. Deceptively, because the Rust external defini-
tion of term u64_eq in the prior rule returned Some(false)

instead of None (that is, the boolean was defined, just false)
this guard as written always allowed the match to proceed!

To fix this bug, Cranelift engineers re-wrote the guard to
actually check for Some(true). VeriISLE’s analysis also
led Cranelift engineers to propose a longer-term solution—
redesigning semantics of if to avoid similar mistakes in the
future. Finally, after the patch was in, a Cranelift engineer
said, “this would have taken me so much longer without the
counterexample, really helpful!”

This case study has a another unexpected takeaway: this
bug occurred despite the optimization being harvested from
another formal-methods-based tool! While the Souper su-
peroptimizer is also based on the SMT theory of bitvectors,
the subtle interaction between Souper-IR and ISLE semantics

16Lightly edited for clarity and brevity.
17Example truncated to 1 bit for brevity.

10

could not have been caught by Souper itself. This highlights
the benefits of VeriISLE’s tight integration with ISLE’s own
program representation: VeriISLE was able to root-cause this
bug because it must reason about core ISLE semantics.

5. Related work
Compiler verification Compiler verification research falls
into two broad categories: lightweight verification of (parts of)
existing compilers using solvers (e.g., [45, 48, 47]), and clean-
slate, foundational verification using proof assistants [13] (e.g.,
CompCert [49, 44]). Foundational verification provides end-
to-end correctness guarantees at the cost of time and per-
formance: typically, such verification takes experts many
years [68], and makes serious optimizations impractical. There
are manually verified lowering passes for CompCert [50] and
CakeML [69, 34], but not for production compilers that con-
sider performance first-class.

Other works use solver-backed methods to verify portions
of industrial compilers. Most closely related to VeriISLE,
Alive [52] verifies LLVM [46] peephole optimization rules
written in a DSL. Alive’s main challenge is undefined behav-
ior; in contrast, VeriISLE need not reason about undefined
behavior, but must instead reconcile IR and ISA types. Further
afield, Alive2 [51] does translation validation on LLVM IR,
and VeRA [15] verifies range analysis in the Firefox JavaScript
engine. Finally, Jitterbug [59] verifies lowering from BPF, a
setting where instruction selection entails simple “macro ex-
pansion” of one instruction at a time.

WebAssembly verification. VeriWasm proves that individ-
ual binaries do not violate Wasm’s safety guarantees [42].
VeriWasm does not prove compiler correctness, though, and
places restrictions on how Wasm compilers can emit native
code.18 In [14], the authors present a non-optimizing compiler
to x86-64 that is verified to preserve sandbox safety, and a
non-optimizing compiler from Wasm to Rust; in contrast, we
verify the correctness of a production, optimizing compiler.

There is also work on mechanizing the Wasm specifica-
tion [73] and formalizing Wasm in the K framework [37].
Other verification efforts look beyond the language and
compiler: WaVE [41] verifies that interactions between the
Wasm runtime and the host OS preserve safety guarantees;
SecWasm [12] extends Wasm’s guarantees using information
flow control; [62] bring verified cryptography to Wasm; and
CT-Wasm extends Wasm itself with constant-time guaran-
tees [74].

Synthesizing instruction selectors. The complexity of in-
struction selection has inspired work on automatically gener-
ating rules based on machine-language semantics. Because
of their focus on portability vs. correctness, many instruction
selector generators use ad hoc search procedures instead of

18After discovering the amode bug described in the introduction, Cranelift
engineers tried to update VeriWasm to operate on the current version of the
backend, but determined it would be too large of an undertaking.

solver-aided techniques [39, 19, 21, 30]. Others use solver-
aided synthesis: LibFIRM [16], for example, uses SMT to
synthesize new rules that cover about 75% of input instruc-
tions, while using an existing, handwritten rule set for the rest.
[26] uses a solver to generate high-coverage selection simple
rules for diverse target architectures. Rake [2] synthesizes
lowering rules from Halide [63] to digital signal processor
ISAs, but its focus is on capturing complex data movement
mechanics within vector registers instead of general-purpose
instruction semantics. Though many compilers use a DSL to
express instruction selection rules, to our knowledge VeriISLE
is the first tool for verifying existing rules by modeling DSL
semantics.

Formal semantics for ISAs. Several efforts formalize ISA
semantics, including the SAIL language [4] and the K Frame-
work [27]. In the future, we will extend VeriISLE to exploit
these existing semantic models.

6. Future work
VeriISLE annotations are currently trusted. We can address
this issue by deriving certain annotation from existing formal
models. For example, VeriISLE can integrate SAIL semantics
for aarch64 [4] and K framework semantics for x86-64 [27].
While neither Cranelift IR nor external Rust term definitions
have formal semantics, we can raise assurance in our specifi-
cations by, for example, verifying them against their external
Rust implementations [7, 8, 64].

Future work can extend VeriISLE to reason about floating
point, more operations with side effects, some SIMD vector in-
structions, and wider integers. VeriISLE already incorporates
annotations for some 128-bit vector instructions, because the
implementation of popcnt on aarch64 uses them. VeriISLE
can also be extended to automatically reason about rule priori-
ties and to cover other backends and the mid-end optimizer.

VeriISLE is meant to be used. We are working to upstream
it into mainline Cranelift, which raises research questions
around usability: how can a formal methods tool best support
engineers who are experts in their domain, but not necessarily
in verification? We hope to explore these questions as we
improve VeriISLE, and as we build on VeriISLE to create
more comprehensive verification infrastructure for other parts
of the compiler.

7. Conclusion
Language-based technologies such as WebAssembly promise
a more secure computing environment, where hosts can safely
sandbox untrusted code to limited segments of memory. This
software-level isolation, though, fundamentally places an in-
credibly high burden (full functional correctness!) on the com-
piler that produces the final executable in a machine-specific
ISA. VeriISLE is a tool for verifying instruction-lowering
rules in one such safety-critical compiler: the Cranelift code
generator. VeriISLE’s key selling point is its modularity—

11

VeriISLE’s annotation language allows concise semantics of
individual terms to be added alongside definitions in ISLE, a
feature-rich instruction-lowering DSL. With VeriISLE, com-
piler developers can eliminate instruction lowering logic as a
potential source security-critical vulnerabilities such as sand-
box escapes. VeriISLE builds toward a future where heavily
optimized, production compilers can integrate advanced for-
mal methods to produce fast and correct machine code.

References
[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening,

and Elizabeth Polgreen. Counterexample guided inductive synthesis
modulo theories. In International Conference on Computer-Aided
Verification (CAV), 2018. URL: https://doi.org/10.1007/978-
3-319-96145-3_15.

[2] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib
Kamil, and Alvin Cheung. Vector instruction selection for digital
signal processors using program synthesis. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2022. URL: https://doi.org/10.
1145/3503222.3507714.

[3] Bytecode Alliance. ISLE language reference. https:
//github.com/bytecodealliance/wasmtime/blob/main/
cranelift/isle/docs/language-reference.md, 2023.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark
Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel
Krishnaswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-
V, and CHERI-MIPS. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2019. URL: https:
//doi.org/10.1145/3290384.

[5] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,
and Peter Sewell. Isla: Integrating full-scale ISA semantics and ax-
iomatic concurrency models. In International Conference on Computer-
Aided Verification (CAV), 2021. URL: https://doi.org/10.1007/
978-3-030-81685-8_14.

[6] Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and
Benoit Baudry. Wasm-mutate: Fuzzing WebAssembly compilers
with e-graphs. In E-Graph Research, Applications, Practices, and
Human-factors Symposium, 2022. URL: https://www.jacarte.
me/assets/pdf/wasm_mutate.pdf.

[7] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.
Summers. Leveraging Rust types for modular specification and verifi-
cation. In ACM SIGPLAN Conference on Object Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), 2019. URL:
https://doi.org/10.1145/3360573.

[8] Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. Verifying
Rust programs with SMACK. 2018.

[9] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec#
programming system: An overview. In Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, 2005. URL: https:
//doi.org/10.1007/978-3-540-30569-9_3.

[10] Björn Roy Baron et al. Cranelift codegen backend for Rust, 2023. URL:
https://github.com/bjorn3/rustc_codegen_cranelift.

[11] Clark W. Barrett, Aaron Stump, and Cesare Tinelli. The
SMT-LIB standard version 2.0. In Proceedings of the 8th In-
ternational Workshop on Satisfiability Modulo Theories (SMT),
2010. URL: https://smtlib.cs.uiowa.edu/papers/smt-lib-
reference-v2.0-r10.12.21.pdf.

[12] Iulia Bastys, Maximilian Algehed, Alexander Sjösten, and Andrei
Sabelfeld. Secwasm: Information flow control for WebAssembly. In
Static Analysis, 2022.

[13] Yves Bertot and Pierre Castéran. Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[14] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe multi-
lingual software sandboxing using WebAssembly. In USENIX Security
Symposium, 2022. URL: https://www.usenix.org/conference/
usenixsecurity22/presentation/bosamiya.

[15] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Towards a verified range analysis for
JavaScript JITs. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2020.

[16] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthe-
sizing an instruction selection rule library from semantic specifica-
tions. In ACM/IEEE International Symposium on Code Generation
and Optimization (CGO), 2018. URL: https://doi.org/10.1145/
3168821.

[17] Bytecode Alliance. The Cranelift compiler. https://github.com/
bytecodealliance/wasmtime/tree/main/cranelift, 2023.

[18] Bytecode Alliance. Wasmtime: A fast and secure runtime for We-
bAssembly. https://wasmtime.dev, 2023.

[19] R. G. Cattell. Automatic derivation of code generators from machine
descriptions. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 1980. URL: https://doi.org/10.1145/357094.
357097.

[20] R G G Cattell. Formalization and Automatic Derivation of Code
Generators. PhD thesis, Carnegie Mellon University, 1978. https:
//apps.dtic.mil/sti/pdfs/ADA058872.pdf.

[21] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun.
C compiler retargeting based on instruction semantics models. In
Design, Automation & Test in Europe (DATE), 2005.

[22] Alex Crichton. Data leakage between instances in the pooling
allocator. https://github.com/bytecodealliance/wasmtime/
security/advisories/GHSA-wh6w-3828-g9qf, November 2022.

[23] Alex Crichton. Miscompilation of constant values in division on
aarch64. https://github.com/bytecodealliance/wasmtime/
security/advisories/GHSA-7f6x-jwh5-m9r4, July 2022.

[24] Alex Crichton. Miscompilation of ‘i8x16.swizzle’ and ‘select’
with v128 inputs. https://github.com/bytecodealliance/
wasmtime/security/advisories/GHSA-jqwc-c49r-4w2x,
2022.

[25] Alex Crichton. Guest-controlled out-of-bounds read/write on
x8664. https://github.com/bytecodealliance/wasmtime/
security/advisories/GHSA-ff4p-7xrq-q5r8, 2023.

[26] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri,
Nestan Tsiskaridze Bullock, Priyanka Raina, Clark Barrett, and Pat
Hanrahan. Synthesizing instruction selection rewrite rules from
RTL using SMT. In Formal Methods in Computer-Aided Design
(FMCAD), 2022. URL: https://doi.org/10.34727/2022/isbn.
978-3-85448-053-2_20.

[27] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S.
Adve, and Grigore Roşu. A complete formal semantics of x86-64
user-level instruction set architecture. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2019.
URL: https://doi.org/10.1145/3314221.3314601.

[28] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2008. URL: https://dl.acm.org/doi/10.
5555/1792734.1792766.

[29] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Sematics, 1991.

[30] João Dias and Norman Ramsey. Automatically generating instruction
selectors using declarative machine descriptions. 2010. URL: https:
//doi.org/10.1145/1706299.1706346.

[31] Chris Fallin. Memory access due to code generation flaw in Cranelift
module. https://github.com/bytecodealliance/wasmtime/
security/advisories/GHSA-hpqh-2wqx-7qp5, May 2021.

[32] Chris Fallin. RFC: Design of the ISLE instruction-selector
DSL. https://github.com/bytecodealliance/rfcs/pull/15,
August 2021.

[33] Chris Fallin. Cranelift’s instruction selector DSL, ISLE: Term-
rewriting made practical. https://cfallin.org/blog/2023/01/
20/cranelift-isle/, January 2023.

[34] Anthony Fox, Magnus O Myreen, Yong Kiam Tan, and Ramana Kumar.
Verified compilation of CakeML to multiple machine-code targets.
2017. URL: https://doi.org/10.1145/3018610.3018621.

[35] Go Authors. Go compiler backend lowering rules.
https://github.com/golang/go/tree/master/src/cmd/
compile/internal/ssa/_gen, 2023.

[36] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with WebAssembly. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2017. URL: https://doi.org/10.1145/
3062341.3062363.

[37] Rikard Hjort. Formally verifying WebAssembly with KWasm,
2020. URL: https://odr.chalmers.se/server/api/core/
bitstreams/a06be182-a12e-46ce-94d3-cff7a5dc42ba/
content.

12

https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1145/3503222.3507714
https://doi.org/10.1145/3503222.3507714
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://www.jacarte.me/assets/pdf/wasm_mutate.pdf
https://www.jacarte.me/assets/pdf/wasm_mutate.pdf
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://github.com/bjorn3/rustc_codegen_cranelift
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://www.usenix.org/conference/usenixsecurity22/presentation/bosamiya
https://doi.org/10.1145/3168821
https://doi.org/10.1145/3168821
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://wasmtime.dev
https://doi.org/10.1145/357094.357097
https://doi.org/10.1145/357094.357097
https://apps.dtic.mil/sti/pdfs/ADA058872.pdf
https://apps.dtic.mil/sti/pdfs/ADA058872.pdf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-7f6x-jwh5-m9r4
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-7f6x-jwh5-m9r4
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-jqwc-c49r-4w2x
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-jqwc-c49r-4w2x
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://doi.org/10.1145/3314221.3314601
https://dl.acm.org/doi/10.5555/1792734.1792766
https://dl.acm.org/doi/10.5555/1792734.1792766
https://doi.org/10.1145/1706299.1706346
https://doi.org/10.1145/1706299.1706346
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/rfcs/pull/15
https://cfallin.org/blog/2023/01/20/cranelift-isle/
https://cfallin.org/blog/2023/01/20/cranelift-isle/
https://doi.org/10.1145/3018610.3018621
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa/_gen
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa/_gen
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://odr.chalmers.se/server/api/core/bitstreams/a06be182-a12e-46ce-94d3-cff7a5dc42ba/content
https://odr.chalmers.se/server/api/core/bitstreams/a06be182-a12e-46ce-94d3-cff7a5dc42ba/content
https://odr.chalmers.se/server/api/core/bitstreams/a06be182-a12e-46ce-94d3-cff7a5dc42ba/content

[38] C. A. R. Hoare. An axiomatic basis for computer programming. In
Communications of the ACM (CACM), 1969. URL: https://doi.
org/10.1145/363235.363259.

[39] Roger Hoover and Kenneth Zadeck. Generating machine specific
optimizing compilers. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 1996. URL: https:
//doi.org/10.1145/237721.237779.

[40] Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engi-
neering an efficient SMT solver for bit-vector arithmetic. In Computer
Aided Verification, 2009. URL: https://doi.org/10.1007/978-
3-642-02658-4_53.

[41] Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan
Narayan, Stefan Savage, Deian Stefan, and Fraser Brown. WaVe:
a verifiably secure WebAssembly sandboxing runtime. In IEEE
Security and Privacy (Oakland), 2023. URL: https://doi.
ieeecomputersociety.org/10.1109/SP46215.2023.00114.

[42] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser
Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian
Stefan. Trust but verify: SFI safety for native-compiled Wasm. 2021.
URL: https://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-
ndss2021.pdf.

[43] Kenton Varda. WebAssembly on Cloudflare workers. https://blog.
cloudflare.com/webassembly-on-cloudflare-workers/,
2018.

[44] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. CakeML: A verified implementation of ML. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2014. URL: https://doi.org/10.1145/2578855.
2535841.

[45] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimiza-
tions correct using parameterized program equivalence. In ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 2009. URL: https://doi.org/10.1145/1542476.
1542513.

[46] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In ACM/IEEE Interna-
tional Symposium on Code Generation and Optimization (CGO), 2004.
URL: https://doi.org/10.1109/CGO.2004.1281665.

[47] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically
proving the correctness of compiler optimizations. In ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2003. URL: https://doi.org/10.1145/781131.781156.

[48] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Auto-
mated soundness proofs for dataflow analyses and transformations
via local rules. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), 2005. URL: https:
//doi.org/10.1145/1047659.1040335.

[49] Xavier Leroy. Formal verification of a realistic compiler. Com-
munications of the ACM (CACM), 52(7):107–115, 2009. URL:
https://doi.org/10.1145/1538788.1538814.

[50] Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009. URL: https://doi.
org/10.1007/s10817-009-9155-4.

[51] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. Alive2: bounded translation validation for LLVM. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2021. URL: https://doi.org/10.1145/
3453483.3454030.

[52] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. Provably correct peephole optimizations with Alive. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2015.

[53] Nuno P. Lopes and John Regehr. Future directions for optimizing
compilers. 2018. URL: https://arxiv.org/pdf/1809.02161.
pdf.

[54] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. In ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 1982. URL: https://doi.org/10.1145/357162.
357169.

[55] Charith Mendis and Saman Amarasinghe. GoSLP: Globally opti-
mized superword level parallelism framework. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages
and Applications (OOPSLA), 2018. URL: https://doi.org/10.
1145/3276480.

[56] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In
Proceedings of the 38th Annual Design Automation Conference, 2001.
URL: https://doi.org/10.1145/378239.379017.

[57] Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr.
Dataflow-based pruning for speeding up superoptimization. In ACM
SIGPLAN Conference on Object Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), 2020. URL: https://doi.org/
10.1145/3428245.

[58] Joshua Nelson. Using rustc_codegen_cranelift for debug
builds. https://blog.rust-lang.org/inside-rust/2020/11/
15/Using-rustc_codegen_cranelift.html, November 2020.

[59] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Specifi-
cation and verification in the field: Applying formal methods to BPF
just-in-time compilers in the Linux kernel. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020. URL:
https://dl.acm.org/doi/abs/10.5555/3488766.3488769.

[60] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark
Barrett, and Cesare Tinelli. Towards bit-width-independent proofs
in SMT solvers. In International Conference on Automated De-
duction (CADE), 2019. URL: https://doi.org/10.1007/978-
3-030-29436-6_22.

[61] Pat Hickey. Lucet takes WebAssembly beyond the browser |
Fastly. https://www.fastly.com/blog/announcing-lucet-
fastly-native-webassembly-compiler-runtime, 2019.

[62] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and
Karthikeyan Bhargavan. Formally verified cryptographic web applica-
tions in WebAssembly. In IEEE Symposium on Security and Privacy
(SP), 2019. URL: https://doi.ieeecomputersociety.org/10.
1109/SP.2019.00064.

[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman P. Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2013.
URL: https://doi.org/10.1145/2491956.2462176.

[64] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza
Johnson, and Ben Laurie. Towards making formal methods normal:
meeting developers where they are. 2020.

[65] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations
for SIMD devices. page 118–131, 2006. URL: https://doi.org/
10.1145/1133981.1133996.

[66] Andreas Rossberg. WebAssembly Specification Release 1.0.
https://webassembly.github.io/JS-BigInt-integration/
core/_download/WebAssembly.pdf, 2019.

[67] Andreas Rossberg. WebAssembly Specification Release 2.0 Draft
Draft 2023-04-08. https://webassembly.github.io/spec/
core/_download/WebAssembly.pdf, 2023.

[68] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. Compositional CompCert. In ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), 2015. URL:
https://doi.org/10.1145/2775051.2676985.

[69] Yong Kiam Tan, Magnus O Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. The verified CakeML compiler
backend. Journal of Functional Programming, 29, 2019. URL: https:
//cakeml.org/jfp19.pdf.

[70] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and
Adrian Sampson. Vectorization for digital signal processors via equality
saturation. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2021.
URL: https://doi.org/10.1145/3445814.3446707.

[71] Vercel Inc. Using WebAssembly (Wasm) at the edge.
https://vercel.com/docs/concepts/functions/edge-
functions/wasm, 2023.

[72] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Build-
ing program optimizers with rewriting strategies. In ACM Interna-
tional Conference on Functional Programming (ICFP), 1998. URL:
https://doi.org/10.1145/289423.289425.

[73] Conrad Watt. Mechanising and verifying the WebAssembly specifica-
tion. 2018. URL: https://doi.org/10.1145/3167082.

[74] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and
Deian Stefan. CT-Wasm: Type-driven secure cryptography for the
web ecosystem. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), 2019. URL: https:
//doi.org/10.1145/3290390.

[75] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2011.
URL: https://doi.org/10.1145/1993498.1993532.

13

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/237721.237779
https://doi.org/10.1145/237721.237779
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00114
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00114
https://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-ndss2021.pdf
https://cseweb.ucsd.edu/~lerner/papers/wasm-sfi-ndss2021.pdf
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/781131.781156
https://doi.org/10.1145/1047659.1040335
https://doi.org/10.1145/1047659.1040335
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://arxiv.org/pdf/1809.02161.pdf
https://arxiv.org/pdf/1809.02161.pdf
https://doi.org/10.1145/357162.357169
https://doi.org/10.1145/357162.357169
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/3428245
https://doi.org/10.1145/3428245
https://blog.rust-lang.org/inside-rust/2020/11/15/Using-rustc_codegen_cranelift.html
https://blog.rust-lang.org/inside-rust/2020/11/15/Using-rustc_codegen_cranelift.html
https://dl.acm.org/doi/abs/10.5555/3488766.3488769
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00064
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00064
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/1133981.1133996
https://doi.org/10.1145/1133981.1133996
https://webassembly.github.io/JS-BigInt-integration/core/_download/WebAssembly.pdf
https://webassembly.github.io/JS-BigInt-integration/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://doi.org/10.1145/2775051.2676985
https://cakeml.org/jfp19.pdf
https://cakeml.org/jfp19.pdf
https://doi.org/10.1145/3445814.3446707
https://vercel.com/docs/concepts/functions/edge-functions/wasm
https://vercel.com/docs/concepts/functions/edge-functions/wasm
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/3167082
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3290390
https://doi.org/10.1145/1993498.1993532

	Introduction
	Background
	Instruction Lowering
	The ISLE lowering DSL
	ISLE's term rewriting for lowering

	ISLE by example: lowering rotations
	Satisfiability Modulo Theories (SMT)

	VeriISLE Design
	The annotation language
	The annotation language grammar and semantics
	The annotation language type system
	Type inference

	Generating verification conditions
	The first query: applicability
	The second query: equivalence

	Implementation and trust model

	Evaluation
	Is VeriISLE applicable to real rules?
	What proportion of invoked rules has VeriISLE verified?
	Can VeriISLE detect known bugs?
	[basicstyle=]x86-64 addressing mode CVE (9.9/10 severity)
	aarch64 unsigned divide CVE (moderate severity)
	aarch64 count-leading-sign bug

	Can VeriISLE find new bugs?
	Another addressing mode bug
	Flawed negated constant rules
	Imprecise semantics for constants in Cranelift IR
	A mid-end root cause analysis

	Related work
	Future work
	Conclusion

