
Vectorization for Digital Signal Processors
via Equality Saturation

Alexa VanHattum
Cornell University
Ithaca, NY, USA

Rachit Nigam
Cornell University
Ithaca, NY, USA

Vincent T. Lee
Facebook Reality Labs Research

Redmond, WA, USA

James Bornholt
The University of Texas at Austin

Austin, TX, USA

Adrian Sampson
Cornell University
Ithaca, NY, USA

ABSTRACT

Applications targeting digital signal processors (DSPs) benefit from

fast implementations of small linear algebra kernels. While exist-

ing auto-vectorizing compilers are effective at extracting perfor-

mance from large kernels, they struggle to invent the complex data

movements necessary to optimize small kernels. To get the best

performance, DSP engineers must hand-write and tune specialized

small kernels for a wide spectrum of applications and architec-

tures. We present Diospyros, a search-based compiler that auto-

matically finds efficient vectorizations and data layouts for small

linear algebra kernels. Diospyros combines symbolic evaluation

and equality saturation to vectorize computations with irregular

structure. We show that a collection of Diospyros-compiled kernels

outperform implementations from existing DSP libraries by 3.1× on

average, that Diospyros can generate kernels that are competitive

with expert-tuned code, and that optimizing these small kernels

offers end-to-end speedup for a DSP application.

CCS CONCEPTS

· Software and its engineering → Source code generation; ·

Hardware→Digital signal processing; · Theory of computa-

tion → Vector / streaming algorithms.

KEYWORDS

Vectorization, DSPs, Program Synthesis, Equality Saturation

ACM Reference Format:

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian

Sampson. 2021. Vectorization for Digital Signal Processors via Equality Sat-

uration. In Proceedings of the 26th ACM International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS

’21), April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3445814.3446707

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446707

1 INTRODUCTION

Compute-heavy embedded sensing applications, from augmented

reality to 5G networking, rely on digital signal processors (DSPs).

DSPs target power- and energy-constrained domains with real-time

performance targets, so their design optimizes for power efficiency

over programmability and software compatibility. Their simple

in-order cores help meet strict real-time deadlines but also mean

that unoptimized code performs poorly. For performance, DSP

architectures expose VLIW and vector instruction sets with exotic

architecture-specific extensions. These instruction sets offload the

burden of parallelization onto the compiler and programmer.

DSP applications typically rely on on two categories of computa-

tional kernels1: (1) large-scale kernels operating on high-dimensional

data (much larger than the machine’s vector width), and (2) small-

scale kernels operating on low-dimensional data (on the order of

the vector width). In an industrial context, the distribution of

kernels tends to be bimodally distributed: many have small dimen-

sionality (∼3ś6), and the remaining are much larger (∼100ś1000).

While compiler toolchains and vendor libraries for DSPs often fo-

cus their attention on large-scale kernelsÐshipping linear algebra

libraries tuned for large, dense operationsÐsmall-scale kernels still

consume a non-trivial portions of the end-to-end performance of

many emerging DSP applications. Some DSP applications are bot-

tlenecked by small-scale kernels as part of the łlast milež of a larger

computation. In other words, a variety of small kernels impose an

Amdahl limitation [8, 25, 42] that yields diminishing returns from

speeding up just the large-scale loops. Other applications, such

as simultaneous localization and mapping (SLAM) [20, 21, 33, 34]

and structure from motion [35], have many components that are

dominated entirely by small-scale kernels.

Compiling efficient small-scale kernels is challenging even for

state-of-the-art compiler techniques because the best performance

requires complex data movement strategies that are beyond the

scope of most automatic vectorization. Moreover, DSP architec-

tures are extremely diverse: they offer per-application instruction

set customization and can even support custom proprietary ISA

extensions [11]. As a result, DSP engineers still manually apply

device- and kernel-specific optimizations by hand-writing vector

intrinsics [2, 17, 43]. This manual effort does not scale with the

plethora of kernels and target architectures. For example, products

and convolutions of small 3×3 and 4×4matrices are commonplace

1Here, we define a kernel to be a function that consumes one or more multidimensional
input matrices and produces one or more multidimensional output matrices. A kernel
can be implemented as multiple nested source-level functions.

874

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

Scalar
Program

Abstract
Vector DSL

Optimized
Vector DSL

Optimized
C++ Intrinsics

Symbolic
Evaluation

Equality
Saturation

Backend
Optimization
& Lowering

Translation
Validation

for (i=0; i<N; i++)
 c[i] = a[i] + …;

(List (+ (Get a 0) …)
 (+ (Get a 1) …)
 …)

(VecAdd (Vec …)
 (Vec …))

vec_add(a_0, b_0);

§3.1 §3.2–3.4 §4

§3.4

Figure 1: The Diospyros compiler workflow. Diospyros first lifts scalar input programs into a high-level DSL via symbolic

evaluation and then searches for equivalent optimized programs using equality saturation. The optimized program is finally

lowered to C++ intrinsics for compilation with a DSP toolchain.

in various machine perception applications, but the most efficient

implementations for these two sizes are very different. Specialized

kernels for each size can vastly outperform general implementa-

tions in linear algebra libraries [15, 31].

This paper designs a compiler, Diospyros, that aims to com-

pete with manual tuning by DSP experts while baking in minimal

assumptions about the target hardware. Diospyros frames com-

pilation as a search problem in a space of candidate programs. It

defines this search space using a system of rewrite rules that en-

compass both high-level functional specifications and low-level

device-specific instructions. Crucially, the resulting program space

includes implementations that use arbitrary indexing to express

complex data movement patterns. Unlike traditional approaches

to general-purpose vectorization [16], Diospyros focuses on using

the shuffle and select instructions common in DSPs to implement

the irregular data movement necessary to pack as much work as

possible into vector lanes.

Figure 1 shows the Diospyros compilation workflow. Diospyros

takes a program in a scalar, imperative language and lifts it to a high-

level vector DSL using symbolic evaluation. The core optimization

engine is an exhaustive search in a restricted space of candidate

programs from this DSL using equality saturation [13, 36, 40]. Most

compilers apply rewrite rules in a fixed order, which offers pre-

dictable compilation but sacrifices optimality. Equality saturation

effectively applies all rewrite rules simultaneously by representing

the input program as an E-graph [23] and performing congruence

closure using the rewrite rules as an equivalence relation. The sat-

urated E-graph compactly represents the entire space of candidate

programs, from which Diospyros can extract the most efficient

one according to an abstract cost model. After extracting the op-

timal program, Diospyros lowers it to C vector intrinsics for code

generation via a backend DSP compiler.

We implement Diospyros to target Tensilica DSPs and show

that it can compile kernels that outperform optimized library func-

tions from the Tensilica SDK by a geometric mean speedup of 3.1×.

Compared to one expert-written kernel hand-tuned for a fixed

matrix size, Diospyros produces code within 8% of the expert per-

formance within 2.2 seconds of compilation time. To show that

Diospyros-compiled kernels offer end-to-end speedups on realistic

applications, we integrate them into code from Theia [35], an open-

source computer vision library for structure from motion (SFM).

The Diospyros version of this application performs 2.1× faster on

our selected functionality than Theia’s original implementation,

which uses the Eigen template library for linear algebra [12].

This paper’s contributions include: (1) a strategy for using sym-

bolic evaluation and equality saturation to search for SIMD im-

plementations of high-level specifications, (2) Diospyros, an end-

to-end compiler design that uses the rewrite system to optimize

computational kernels for DSP architectures, and (3) an evaluation

on a range of realistic DSP computations and a commercial DSP tar-

get showing performance improvement over optimized baselines.

2 MOTIVATING EXAMPLE

This section shows how an example DSP kernel poses challenges

to traditional compilers and how hardware-specific manual tuning

can outperform them. We give an overview of how Diospyros’s

design can mimic the hand-tuning process.

Consider optimizing a fixed-size matrix convolution for a DSP.

Embedded DSP applications typically rely on specialized kernel

implementations for fixed, small data sizesÐfor example, a convo-

lution with a 3 × 5 input matrix and a 3 × 3 filter:

for (oRow = 0; oRow < 5; oRow++) {

for (oCol = 0; oCol < 7; oCol++) {

for (fRow = 0; fRow < 3; fRow++) {

for (fCol = 0; fCol < 3; fCol++) {

fRT = 3 - 1 - fRow; fCT = 3 - 1 - fCol;

iRow = oRow - fRT; iCol = oCol - fCT;

if (iRow >= 0 && iRow < 3 &&

iCol >= 0 && iCol < 5)

o[oRow][oCol] += in[iRow][iCol] * f[fRT][fCT];

} } } }

The outer loops run 5 and 7 times because they iterate over the

output matrix. This convolution łpadsž the input matrix at the

boundaries and produces a slightly larger output matrix.

In this example, we will optimize this convolution for the Ten-

silica Fusion G3 DSP [6], which has a 4-wide floating-point SIMD

vector unit. SIMD instructions are critical in DSP programming for

both performance and efficiency: they both enable parallelism and

amortize the energy cost of fetching and dispatching instructions.

While statically specifying the sizes allows Tensilica’s vectorizing

compiler to improve on this naive for-loop-based implementation

by 1.6×, the best implementation we have found with Diospyros

uses machine-specific vector intrinsics to achieve a further speedup

of 22.9×. We explore why and how this gap arises in general for this

875

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

b c da

0 1 2 3

b xac

1 502

index vector

input vectors

output vector

x y zw

4 5 6 7

Figure 2: An ISA-specific shuffle instruction that takes three

argumentsÐtwo input vectors and an index vectorÐand pro-

duces a single output vector with the specified combination

of values. Experts can use similar instructions to orchestrate

complex data movement strategies.

category of DSP kernels, where the problem dimensions are close

to the vector width. Namely, for these kernels, boundary conditions

make up a large proportion of the kernel’s work, which hinders

straightforward approaches to parallelization.

Traditional automatic parallelization. Two commonplace com-

piler techniques for vectorizing sequential code are loop-level vec-

torization and superword-level parallelism (SLP) optimizations [16].

For 2D convolution, the index math for transposing the filter (fRT

and fCT) and the if for the boundary conditions pose a problem to

loop-level vectorization. While loop-level vectorization works well

when the data dimensions are large enough that there is a steady

state that admits processing in 4-wide chunks, smaller loops do

not have such a steady state. In this convolution example, no loop

executes more times than twice the vector widthÐso every loop

iteration is a boundary condition.

Because the array sizes for our problem are fixed, a compiler

could unroll the loops and apply non-loop vectorization techniques

such as SLP [16]. And indeed, specializing the array sizes leads to

the aforementioned 1.6× speedup over a version with variable array

sizes. However, this approach still leaves some performance on the

table. Because the matrix dimensions (3 × 5 and 3 × 3) are close

to the machine’s vector width (4), SIMD instructions do not apply

łcleanlyž to the input arrays. Furthermore, the memory accesses to

f are not contiguous, meaning that a simple vector load will not

suffice to enable vectorized arithmetic. The Tensilica compiler’s

vectorization pass fails to find perfectly aligned runs of 4 identical

operations, and it does not attempt to gather or shuffle disparate

values to fill a vector. Alternatively, the if for the boundary con-

dition means that a straightforward vectorized version will need

to use predicated operations, wasting some potential computation

bandwidth. Traditional vectorization optimizations rely on regu-

larity in data movement and computation that is not present in

specialized DSP kernels like this one, where loops are imperfect

and data sizes are not much larger than the vector width.

Hand tuning. Instead, an expert programmer can use the Fusion

G3’s special instructions for data movement to pack computation

into the vector lanes. The DSP supports gather/scatter and shuf-

fle operations that pack data irregularly into vector registers for

subsequent regular processing. For example, this intrinsic call:

int indices[4] = {1, 2, 0, 5};

xb_vecMx32 vec3 = PDX_SEL_MX32(vec1, vec2, indices);

computes a new 4-wide vector value by selecting specific hard-

coded indices from the concatenation of two other vectors, vec1

and vec2, as illustrated in Figure 2. The programmer can use this

strategy to implement tactics for gathering data to fill vector lanes

for later computation, like this multiplication:

xb_vecMx32 vec4 = PDX_MUL_MX32(vec1, vec3);

With judicious use of vector intrinsics and manual derivation of

index operands, an expert implementation can surmount the limita-

tions of traditional auto-vectorization. A manually tuned kernel can

be an order of magnitude faster than the automatically parallelized

version. However, the tuning required is specific to both the Fusion

G3 target and the specific specialized size of the convolution kernel.

A different vectorization strategy with completely different shuffle

indices will be optimal for a 4 × 4 filter, for example.

Vectorization via rewriting. Diospyros uses term rewriting to

search for DSP vectorization strategies that exploit this kind of ir-

regular data layout techniques to optimize for vector unit utilization.

Our system starts with an imperative reference implementation

and, using symbolic evaluation (Section 3.1), extracts a specification

describing the value to compute for each element of the kernel’s

output(s). For our convolution example, the specifications for the

first four values of the output matrix are:

i0,0 × f1,1 + i0,1 × f1,0 + i1,0 × f0,1 + i1,1 × f0,0

i0,0 × f1,2 + i0,1 × f1,1 + i0,2 × f1,0 + i1,0 × f0,2 + i1,1 × f0,1 + i1,2 × f0,0

i0,1 × f1,2 + i0,2 × f1,1 + i0,3 × f1,0 + i1,1 × f0,2 + i1,2 × f0,1 + i1,3 × f0,0

i0,2 × f1,2 + i0,3 × f1,1 + i0,4 × f1,0 + i1,2 × f0,2 + i1,3 × f0,1 + i1,4 × f0,0

Here, the first expression is smaller because of the kernel’s bound-

ary condition. Diospyros uses a term rewriting system to find vec-

torization opportunities across these mathematical expressions. For

example, the vec_multiply_accumulate rule can apply here to show

that the above outputs are equivalent to expressing the last prod-

uct in each element as a fused multiplyśaccumulate vectorized

operation, VecMAC:

(VecMAC (...)

(Vec (Get I 6) (Get I 7) (Get I 8) (Get I 9))

(Vec (Get F 0) (Get F 0) (Get F 0) (Get F 0)))

Vec and Get are ISA-agnostic data movement abstractions that rep-

resent accessing the specified indices of a memory (with 2D arrays

flattened to 1D access). Our full vector domain specific language is

described in Section 3.1 and shown in Figure 3.

Due to the commutativity and associativity of + and ×, there

are many possible shuffles a programmer could use to generate

valid VecMAC operations. Diospyros uses an equality saturation

approach to consider many possible shufflesÐrather than applying

destructive rewrites, as a traditional compiler wouldÐand selects

the pattern best suited to an abstract model of our architecture’s

data movement instructions. For example, here each Vec references

the elements of only a single input array, which can be implemented

with in-register data movement.

When targeting the Fusion G3, Diospyros produces this code for

the vectorized expression:

shuf_I = PDX_SEL_MX32(I_4_8, I_8_12, [6, 7, 8, 9]);

shuf_F = PDX_SHUF_MX32(F_0_0, [0, 0, 0, 0]);

PDX_MAC_MFX32(out_0_4, shuf_I, shuf_F);

876

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

The full implementation that Diospyros generates for this problem

size is 22.9× faster than a naive fixed-size implementation and 4.5×

faster than an optimized vendor library kernel.

3 REWRITING FOR VECTORIZATION

Our core vectorization formulation uses equality saturation [36] to

search for optimized implementations. This section describes the

optimization workflow. Programmers write an imperative reference

implementation using scalar operations, symbolic evaluation lifts

this to an abstract vector DSL, then Diospyros searches for an

optimal vectorized program using an equality saturation engineÐ

trading off efficiency and completeness in the search. Next, Section 4

shows how Diospyros compiles the optimized program back to the

imperative DSL to produce efficient code for the DSP target.

3.1 Defining and Lifting Specifications

Diospyros takes as input scalar programs written in a simple im-

perative language with first-class matrix and vector objects and

operations, implemented as an embedded Racket DSL. For example,

this code specifies a simple vector-vector add:

(define (vector-add-spec A B n)

(vec-decl 'A n 'input)

(vec-decl 'B n 'input)

(define C (make-vector n))

(for ([i n])

(vector-set! C i

(add (vector-ref A i)

(vector-ref B i))))

C)

Here, A and B are vectors of input data and n is a compile-time

parameter that determines the input size.

This input language is both convenient to write and straightfor-

ward to compile to executable code for use in validation or testing.

It supports arbitrarily complex indexing expressions and control

flow, as long as they are independent of the input data. The input

language provides the usual scalar arithmetic operations, such as +,

but users can also define custom scalar functions to reflect a given

target DSP and application.

While we could optimize this language directly (in the spirit of

Denali [13]), doing so would conflate details of the imperative imple-

mentation with the underlying abstract mathematical computation.

To focus on the latter and simplify the search, Diospyros first lifts

imperative input programs into a mathematical representation. It

symbolically evaluates the input program using Rosette [37], which

extends Racket DSLs with symbolic evaluation support.

The symbolic evaluation step produces an expression in Diospy-

ros’s vector DSL, shown in Figure 3. The vector DSL includes both

scalar and vector versions of common arithmetic operations (+,

−, ×, etc.), as well as operations to initialize vectors with literals

or variables and to extract individual vector lanes. The lifting pro-

cess, however, only produces the scalar subset of the languageÐthe

rewriting system in the next section will use the vector constructs.

Lifting supports calls to user-defined functions by introducing un-

interpreted functions. The same symbolic evaluation engine also

powers the translation validation tool that Diospyros uses to verify

its output (see Section 3.4).

⟨prog⟩ ::= (List ⟨expr ⟩+) | ⟨expr ⟩

⟨expr ⟩ ::= ⟨scalar ⟩ | ⟨vector ⟩

⟨scalar ⟩ ::= ⟨integer ⟩ | ⟨variable⟩

| (+ ⟨scalar ⟩ ⟨scalar ⟩) | (- ⟨scalar ⟩ ⟨scalar ⟩)

| (* ⟨scalar ⟩ ⟨scalar ⟩) | (/ ⟨scalar ⟩ ⟨scalar ⟩)

| (sgn ⟨scalar ⟩) | (sqrt ⟨scalar ⟩) | (- ⟨scalar ⟩)

| (Get ⟨variable⟩ ⟨integer ⟩)

| (⟨func⟩ ⟨scalar ⟩∗)

⟨vector ⟩ ::= (Vec ⟨scalar ⟩+) | (Concat ⟨vector ⟩ ⟨vector ⟩)

| (VecAdd ⟨vector ⟩ ⟨vector ⟩) | (VecMinus ⟨vector ⟩ ⟨vector ⟩)

| (VecMul ⟨vector ⟩ ⟨vector ⟩) | (VecDiv ⟨vector ⟩ ⟨vector ⟩)

| (VecMAC ⟨vector ⟩ ⟨vector ⟩ ⟨vector ⟩)

| (VecSgn ⟨vector ⟩) | (VecSqrt ⟨vector ⟩)

| (VecNeg ⟨vector ⟩)

⟨func⟩ ::= ⟨symbol⟩

Figure 3: Diospyros’s vector DSL. A top-level program is a

(possibly singleton) list of outputs. Expressions operate over

both scalars and vectors.

To expose vectorization opportunities for the rewriting system,

the lifting process converts matrix and vector outputs into a single

List output term, with one element for each value in the program

output. For example, the vector-vector add above with n = 2 lifts

to this expression:

(List

(+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1)))

Here, Get is list access and List constructs a new output list holding

the two elements of the output vector.

3.2 Rewriting Strategy

To vectorize the lifted program in the abstract DSL, Diospyros

uses a family of built-in (though user-extensible) rewrite rules. The

key equivalence that enables vectorization is that the rewrite rules

consider a List to be equivalent to a concatenation of fixed-size

vectors. For example, Diospyros can rewrite our vector-vector add

with n = 4 and a vector width of two this way:

(List (+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1))

(+ (Get a 2) (Get b 2))

(+ (Get a 3) (Get b 3)))

⇝

(Concat (Vec (+ (Get a 0) (Get b 0))

(+ (Get a 1) (Get b 1)))

(Vec (+ (Get a 2) (Get b 2))

(+ (Get a 3) (Get b 3))))

Vec constructs a vector from a configurable machineświdth number

of scalar values (here, two), and Concat concatenates two vectors

into a list. In real DSP code, they correspond to vector load and store

instructions (see Section 4). Diospyros’s rewrite rules can pad lists

with zeros if their lengths are not a multiple of the vector width.

This rewriting into vector-sized chunks creates opportunities to

use vectorized computation. The rewrite system finds Vec expres-

sions that contain similar scalar expressions and replaces them with

877

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

their vectorized equivalents. For example, the rule for introducing

vectorized add instructions, VecAdd:

(Vec (+ a b) (+ c d))⇝ (VecAdd (Vec a c) (Vec b d))

applies twice to the example above, producing:

(Concat (VecAdd (Vec (Get a 0) (Get a 1))

(Vec (Get b 0) (Get b 1)))

(VecAdd (Vec (Get a 2) (Get a 3))

(Vec (Get b 2) (Get b 3))))

Here, the indices in the Get expression determine the data move-

ment strategy required for this program. In this case, the pairs of

indices 0, 1 and 2, 3 can each be implemented by a vector load with-

out additional data movement. This example is now fully vectorized

because all Vec expressions contain simple memory lookups and

no scalar computations expressions remain.

Diospyros’s code generation backend (Section 4) produces DSP

code from this vectorized program by emitting C intrinsics resem-

bling this pseudocode:

vecreg a_0_2 = load(a, 0, 2);

// ...

vecreg b_2_4 = load(b, 2, 2);

vecreg add_1 = vec_add(a_0_2, b_0_2);

vecreg add_2 = vec_add(a_2_3, b_2_4);

store(out, add_1, 0, 2);

store(out, add_2, 2, 2);

While this simple example has perfectly aligned vector accesses,

most realistic code requires nontrivial data movement to fill the vec-

tor registers. Diospyros’s backend consumes these Vec expressions

to produce actual loads and data movement instructions based on

the high-level strategy found by the rewrite engine. During code

generation, the backend selects vector shuffle code to implement

each given Vec expression. Similarly, real code mixes both vector

and scalar computation; Diospyros generates a mixture of both.

3.3 Searching for Rewrites

In general, applying the rewrite rules directly (like a traditional

compiler) does not promise optimalityÐwe must be sure to ap-

ply the right rules in the right order to find the optimal program

(with respect to our rule set). This section describes how Diospyros

searches the space of all rewrite rule applications by representing

the lifted program as an equality graph (E-graph) [23] and using

equality saturation [36] for efficient search.

Equality saturation. An E-graph is a data structure for efficiently

representing a large set of terms and equivalences between them.

The nodes of an E-graph are function symbols or terminals, and

subgraphs represent terms. Each node is associated with an equiva-

lence class, and the E-graph guarantees that two nodes are in the

same equivalence class if and only if the program terms rooted

at them are equivalent. When used for program optimization, the

equivalence relation is program equivalence.

Initially, the E-graph represents only one program and its sub-

terms (the input program in the abstract DSL). Equality saturation

then applies rewrite rules (program transformations) to the E-graph,

which introduces new nodes into the graph and annotates them

VecAdd

VecMulv1

v2 v3

(a) Before rewriting

VecAdd

VecMulv1

v2 v3

VecMAC

(b) After rewriting

Figure 4: AnE-graph before and after applying a rewrite rule

for fused multiplyśaccumulate. Solid boxes are nodes and

represent program terms. Dashed boxes represent equiv-

alence classes. After rewriting, the VecAdd and VecMAC

terms are in the same equivalence class.

with the appropriate equivalence classes to maintain congruence.

For example, this is a rewrite rule for fused multiplyśaccumulate:

(VecAdd a (VecMul b c))↭ (VecMAC a b c)

Figure 4 illustrates the application of this rewrite rule to an E-graph

which initially represents the program (VecAdd v1 (VecMul v2 v3)).

Applying the rule introduces a new VecMAC node into the graph,

with the variables v1, v2, and v3 as children, and adds the new node

to the equivalence class of the existing VecAdd node.

Equality saturation iteratively applies all rewrite rules (possi-

bly multiple times), terminating when no potential rewrite rule

application would change the graphÐthe graph has saturatedÐor a

timeout is reached. At this point (unless the timeout is reached), the

saturated E-graph represents all programs that could be produced

by applying the rewrite rules in any order. This property allows us

to avoid the phase ordering problem common to compilers.

We use the egg [40] library for E-graphs and equality saturation.

In egg, a rewrite rule comprises two parts: a searcher that looks for

nodes that can be rewritten, and an applier that applies a rewrite.

egg exposes a pattern DSL to specify simple syntactic rewrites and

a Rust API to implement custom searchers and appliers with more

complex logic than simple pattern matching.

Custom matching for vectorization. Simple unary scalar opera-

tions can be vectorized using rules of the form shown in Section 3.2.

However, DSP kernels often do not fit exactly within the target

architecture’s vector lanes (for example, a 3 × 3 matrix multiply

on an architecture with vector width 4). To vectorize operations

while maximizing hardware utilization, Diospyros provides rewrite

rules that work even when some lanes of a vector computation are

empty. For example, the following concrete rewrite is sound and

enables vectorizing an addition with irregular shape:

(Vec (+ a b) 0 (+ c d) 0)⇝ (VecAdd (Vec a 0 c 0) (Vec b 0 d 0))

To avoid specifying every permutation of zeros on the left-hand

side of this rule, and repeating this specification for each binary

operation, Diospyros uses egg’s support for custom rewrite rules

that go beyond pattern matching. The custom rule first matches

on the outer vector and then identifies whether each lane matches

either the operator pattern (⟨op⟩ x y) or chosen concrete values

(in this case, a constant zero). Using these custom rules makes it

easier to extend Diospyros with DSP-specific instructions without

developing a comprehensive new rewrite rule family.

878

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

Associativity & commutativity. A common challenge in rewrite

systems is handling operators that are associative or commutative

(or both). For example, we want this rewrite:

(+ (+ a b) 0)↭ (+ a b)

to also apply to associative or commutative variants of the LHS

such as (+ a (+ b 0)). But applying associative and commutative

variants of such rules to saturation dramatically increases the size

of an E-graph; the decision problem of whether two terms can be

unified modulo associativity and commutativity (the AC-matching

problem) is NP-complete [4]. This theoretical problem is also a

scalability challenge for equality saturation in practice [22].

Diospyros addresses AC-matching by optionally allowing users

to disable associativity and commutativity rules during saturation.

This approach sacrifices completeness in terms of missing some

potential rewrites, but reduces memory requirements and thus

allows Diospyros to compile kernels with deeper syntax trees over

associative and commutative operators. To regain some of the power

of associativity and commutativity, we use more complex rewrite

rules to selectively re-enable some limited forms of AC rules that

we have found to be profitable in practice.

For example, consider the following 4-wide vector:

(Vec (+ a0 (* b0 c0))

(+ a1 (* b1 c1))

(+ a2 (* b2 c2))

(+ (* b3 c3) a3))

We would like to optimize the scalar operations in this vector into a

single vectorized multiplyśaccumulate. However, without a general

commutativity rule for +, the fourth lane prevents introducing a

VecMAC operation. We work around this limitation using a custom

searcher that matches on each lane independently with one of

several pattern options, and then combines the results. For vector

multiplyśaccumulate, each lane must match one of these patterns:

(+ a (* b c)) (+ (* b c) a) (* b c) 0

The applier (right-hand side) of this rule collects the arguments

into vectors (mapping łmissingž values to zero) and applies the

fused operation:

(VecMAC (Vec a0 a1 a2 a3)

(Vec b0 b1 b2 b3)

(Vec c0 c1 c2 c3))

Unlike an approach that includes AC rules when saturating the E-

graph, this custom searcher approach does not persist its discovered

equivalences. This difference trades off memory for compute: rather

than persisting these equivalences in the E-graph, we re-compute

them every time we try to apply the custom searcher. In practice,

we have found this to be a worthwhile trade-off, allowing larger

kernels that previously exhausted the memory of a 512GB host

to successfully compile. We expect that similar customizations for

AC searching would be beneficial in a variety of domains beyond

vectorization.

Floating point accuracy. Diospyros’s rewrite rules are correct

with respect to the real numbers. They do not adhere to strict float-

ing point semantics which, for example, would not allow associa-

tivity in addition or multiplication. Diospyros shares this character-

istic with other modern optimizing compilers for compute kernels

that prioritize speed over numerical stability [14, 29]. We measure

floating point error in our evaluation (Section 5) and find Diospyros-

generated code to match reference implementations within several

decimal places.

3.4 Extraction

After equality saturation completes, Diospyros has a single E-graph

representing many programs that are equivalent to the input pro-

gram (according to the rewriting system). Each program would

be a valid solution to the compilation problem, but we want to

extract the most efficient solution. We cannot explicitly enumerate

the programs to search for an optimal oneÐdoing so would sacri-

fice the compactness of the E-graph representation. Prior equality-

saturation-based superoptimizers [13] extract efficient code by gen-

erating cost-related verification conditions from the E-graph and

discharging them with a SAT solver, but this requires a detailed

architecture-specific cost model.

Diospyros extracts an efficient solution from the E-graph using

a cost model that assigns a fixed cost to each operator in the vec-

tor DSL. This cost model reflects the time and energy savings of

vectorization as well as the cost of reading values from registers

versus memory. To support efficient extraction from the E-graph

(linear in the number of E-graph nodes rather than the number of

candidate programs), this cost function must be strictly monotonic,

i.e., an expression’s cost is greater than the sum of the costs of its

subexpressions. This limitation makes extraction efficient because

it avoids the need to explore all the zero-cost variants of a candidate

expression. While this restriction limits the cost models Diospyros

can express, in our experience we can still extract fast programs, as

Section 5 demonstrates.

Our cost model for data movement is intentionally high-levelÐ

Diospyros assigns a lower cost to shuffles that gather data from a

single input array (or zeros) than to shuffles across different inputs

or non-zero scalars. The Fusion G3’s fast, unrestricted shuffle in-

struction allows this abstract cost model to serve as a good proxy

for data movement costs. This approach may be a poorer fit for ar-

chitectures without support for flexible shuffles (Section 6 discusses

this limitation further).

Timeouts. Saturating an E-graph guarantees that it captures all

possible orderings of the rewrite rules. In practice, saturation can

be very expensive, and so we impose both a wall-clock timeout

and an E-graph node limit to terminate early. Diospyros can still

produce a solution from a timed-out compilation by applying the

above extraction process to the partially saturated E-graph. Half of

our benchmarks in Section 5 time out, and yet most still outperform

optimized libraries. Section 5.5 studies the impact of timeouts on

the quality of Diospyros’s output.

Translation validation. Diospyros depends on a set of rewrite

rules to define the search space of equivalent programs. The equality

saturation engine trusts these rules; while most rules are simple,

an incorrect one can cause Diospyros to miscompile a program. We

address this risk by re-using the symbolic evaluation engine from

Section 3.1. We use this engine to optionally perform translation

validation on the final extracted program, using Rosette [37] to

879

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

prove that the extracted program is equivalent to the input one for

all possible inputs.

The validation assigns no semantics to the uninterpreted func-

tions that represent user-defined functions, and so programs involv-

ing them may produce spurious validation failures (for example, we

would not know that a user-defined square function only produces

non-negative values). The user can optionally provide (possibly

partial) semantics for user-defined functions as a Racket function,

which Rosette lifts to operate on symbolic inputs and uses to vali-

date translations. These semantics are used only at the translation

validation stage and not by the rest of the compiler.

Translation validation removes the equality saturation engine

and the rewrite rules themselves from the trusted computing base

of the compiler. However, the validation is between two programs

in the vector DSL, and so both the initial lifting from imperative

code into that DSL and the backend code generation (Section 4)

are still trusted. Diospyros’s translation validation models values

in the theory of real arithmetic, rather than with precise floating

point semantics. Anecdotally, we have found translation validation

very useful when developing and debugging new rewrite rules and

vector DSL extensions.

4 LOWERING & CODE GENERATION

After extraction from the E-graph, we are left with a vectorized

program in an idealized vector DSL. This section describes how

Diospyros compiles this program, first to a lower-level vector IR

and then to C++ specific to the target DSP architecture.

Abstract vector IR. To capture the essence of vector computation

with data movement, the Diospyros backend defines a machine-

independent vector intermediate representation (IR). At this abstrac-

tion level, kernels operate on user-specified input arrays to produce

outputs using an imperative language free of control flow. The IR

includes common vectorized operations such as memory loads and

stores, arithmetic, and data shuffles, as well as user-defined uninter-

preted functions for both scalar and vector operations. While the IR

is at a fairly low level of abstraction, it abstracts away concrete de-

tails of the DSP architecture, deferring them to a later architecture-

specific instruction selection phase (Figure 1).

One key challenge to solve at this compilation step is how to

translate instances of Vec in the vector DSL. Vec terms represent

vector initializations, and each vector lane can be populated from an

arbitrary memory location. For example, the quarternion product

benchmark we evaluate in Section 5 includes a Vec term in its

output of the form:

(Vec (Get a 1) (Get a 2) (Get a 0) (Get a 3))

To initialize this vector, the backend IR includes a vector shuffle

operation:

(vec-shuffle inputs indices)

that takes as input an array of indices defining where to move

each element of inputs. The IR does not restrict the possible values

of indices, offering the flexibility to compile vectorization pat-

terns discovered by equality saturation that require complex data

movement. Lowering this instruction to the target DSP architecture

requires selecting an instruction sequence that achieves this desired

movement using the architecture’s available shuffle operations.

IR-level optimization. Diospyros’s compilation flow includes fully

unrolling loop nests, which can create very large programs with

redundant terms. This redundancy is not an issue during equal-

ity saturation, because the E-graph representation implicitly de-

duplicates redundant terms. However, a naive lowering from the

high-level vector DSL would include this redundancy and produce

kernels far too large for resource-constrained targets. The Diospy-

ros backend implements a local value numbering (LVN) pass to

eliminate redundant terms. This pass is highly effective: for the

quarternion product benchmark in Section 5, it reduces the output

size from over 100,000 lines of C++ to under 500 lines.

Instruction selection. The final phase of compilation is to per-

form instruction selection for a concrete architecture. Diospyros

delegates much of this work to the vendor-supplied DSP compiler

toolchain, avoiding the need to integrate deep target-specific knowl-

edge into Diospyros for each new DSP target architecture. The low-

ering phase translates the low-level IR into C++ compiler intrinsics

that are then compiled with the DSP toolchain. The programmer can

provide the name and type signature of target-specific instructions

for both scalar and vector operations.

5 EVALUATION

Our evaluation has two main components: a demonstration of

speedups for individual kernels compiled with Diospyros (Sec-

tion 5.4), and a more detailed examination of an application that

can benefit from replacing library calls to fixed-sized linear algebra

kernels with Diospyros kernels (Section 5.7).

5.1 Implementation

Diospyros currently targets Tensilica’s Xtensa Fusion G3 family of

DSP architectures [6]. The backend lowers the vec-shuffle instruc-

tion in the low-level IR to the Xtensa PDX_SHFL_MX32 (single-register

shuffle) and PDX_SEL_MX32 (two-register select) intrinsics. To imple-

ment arbitrary shuffles with more than two registers, Diospyros

uses nested select instructions.

Diospyros’s implementation spans two languages. 4,800 lines of

Racket, using the Rosette framework [37], implement the domain-

specific vector languages, lifting, translation validation, and back-

end compilation phases. 1,400 lines of Rust implement the rewrite

rules and cost model using the egg [40] equality saturation library.

5.2 Methodology

We report cycle counts from Tensilica’s cycle-level simulator for the

Fusion G3 DSP processor [6], xt-run. We use use xt-run’s default

memory model, which assumes an ideal, unit-delay memory for

all accesses. The simulator is deterministic, so we report results

for a single execution. We compile all implementations (baseline

loops, library-provided functions, and Diospyros-generated code)

with the xt-xcc/xt-xc++ compiler from the Tensilica Xtensa SDK

880

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

Table 1: Benchmark kernels used in the evaluation. We list the lines of code in the reference implementation and show the

time and maximummemory used for compilation, including symbolic evaluation, optimization, and code generation but not

translation validation.

Benchmark Description Ref. LOC Size Time Memory

2DConv 2D convolution 131 3×3, 2×2 2.2s 145 MB

3×3, 3×3 5.6s 145 MB

3×5, 3×3 30.3s 626 MB

4×4, 3×3 23.8s 370 MB

8×8, 3×3 3m 16s† 3.8 GB

10×10, 2×2 21.6s 401 MB

10×10, 3×3 3m 24s† 4.1 GB

10×10, 4×4 3m 11s† 5.0 GB

16×16, 2×2 1m 8s 1.2 GB

16×16, 3×3 3m 9s† 4.7 GB

16×16, 4×4 3m 57s† 4.4 GB

MatMul matrix multiply 71 2×2, 2×2 1.9s 144 MB

2×3, 3×3 2.2s 136 MB

3×3, 3×3 2.7s 124 MB

4×4, 4×4 5.8s 130 MB

8×8, 8×8 3m 22s† 4.0 GB

10×10, 10×10 3m 30s† 6.0 GB

16×16, 16×16 3m 38s† 4.5 GB

QProd quaternion product 144 4, 3, 4, 3 6.7s 128 MB

QRDecomp QR matrix decomposition 174 3×3 4m 38s† 2.2 GB

4×4 4h 25m† 35.4 GB

† Equality saturation timed out after 180s.

3×3
2×2

2DConv

3×3
3×3

2DConv

3×5
3×3

2DConv

4×4
3×3

2DConv

8×8
3×3

2DConv

10×10
2×2

2DConv

10×10
3×3

2DConv

10×10
4×4

2DConv

16×16
2×2

2DConv

16×16
3×3

2DConv

16×16
4×4

2DConv

2×2
2×2

MatMul

2×3
3×3

MatMul

3×3
3×3

MatMul

4×4
4×4

MatMul

8×8
8×8

MatMul

10×10
10×10
MatMul

16×16
16×16
MatMul

4, 3, 4, 3
QProd

3×3
QR

Decomp

4×4
QR

Decomp

0.25

0.5

1

2

4

8

16

32

S
p
ee
d
u
p
ov
er

N
ai
ve

(fi
xe
d
-s
iz
e)

Naive

Naive
(fixed size)

Diospyros

Nature

Eigen

Figure 5: Speedup over Naive (fixed size) in simulated cycles, log scale. Bars above the blue line indicate a speedup. Naive is a

naive loop nest, Naive (fixed size) is a loop nest with fixed bounds, Diospyros is our system, Nature is a vendor-supplied library

function, and Eigen is a C++ template linear algebra library.

at the highest optimization level, -O3.2 We run experiments on a

machine with two Intel Xeon E5-2620v4 CPUs running CentOS 7.6.

We give Diospyros a 3-minute timeout for equality saturation with

a node limit of 10,000,000. We run without full associativity and

commutativity enabled (as described in Section 3.3).

2Tensilica also provides a second compiler, called xt-clang++, that is not well-
documented in our version of the Xtensa SDK. Xtensa specifies that xt-clang++
does not include a loop transformation framework, such as the one in xt-xc++ at
the -O3 optimization level; however, it does perform better on some scalar code due
to more aggressive inlining and a different software pipelining scheduler. To ensure a
consistent baseline, we use the better documented, default xt-xc++ compiler.

We compare Diospyros with the Nature DSP library included

with Tensilica’s SDK. Nature is optimized specifically for the Fu-

sion G3 using vector intrinsics, so it performs better than naive

C++; however, the library’s performance is limited by the need to be

generic over matrix sizes. Not all sizes have Nature comparisons

because the library often restricts dimensions to multiples of 4 to

match the machine vector width. We also compare with Eigen [12],

a portable (not Xtensa-optimized) C++ template library for linear

algebra, where available. Although Nature and Eigen are the com-

petitive baselines, we also include straightforward loop-nest-based

881

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

implementations for reference: one with parametric sizes and one

with sizes fixed at compile time (with #define). Figure 5 normalizes

simulated cycle times as speedups over the fixed-size naive baseline.

5.3 Kernel Benchmarks

Table 1 lists the benchmark kernels we use, which are inspired

by use cases in computer vision and machine perception. QProd,

for instance, is a Euclidean Lie group product [32], which includes

quaternion and translational product components and appears in

applications such as pose estimation or camera models.

The table also shows the total compilation time for each bench-

mark. While we set the timeout for equality saturation at just 3

minutes, some benchmarks take a significant amount of time to

do backend optimization and code generation. QRDecomp at the

4 × 4 size is a pathological case. The kernel when fully unrolled

is extremely large: the extracted specification alone is a 509 MB

text file. As a result, the E-graph does not saturate and it finds no

vector instructions. The expression is heavily redundant, so our

post-processing optimizations (Section 4) take several hours and

gigabytes of memory to remove redundancy before generating out-

put program, producing only 457 lines of C as output. Here, the

performance benefits of the additional common subexpression elim-

ination enabled by symbolic evaluation (and exploited by our local

value numbering optimization) are enough to beat the naive and

library implementations, even without vectorization. We discuss

this effect further in Section 5.6.

5.4 Kernel Performance Results

Figure 5 compares the Diospyros-generated kernels against straight-

forward loop-based implementations (with both parametric sizes

and inlined fixed sizes to facilitate more aggressive -O3 optimiza-

tions) and the Nature DSP and the Eigen library functions. On aver-

age, Diospyros-optimized kernels outperform the best non-expert

baseline by 3.1×.

The Diospyros-generated matrix multiply kernels are between

2.7× and 19.3× faster than the fixed-size naive loop nests. The trends

in Figure 5 indicate that even highly-optimized code such as Nature

can perform poorly on small kernels, such as the 2×2 square matrix

product, due to the control overhead of the parametrized unrolling.

In the case of 2DConv, our example from Section 2, Diospyros

finds solutions that are up to 7.5× faster than the library implemen-

tations. Nature outperforms Diospyros on 2DConv at two sizes that

are greater than or equal to the vector width: input sizes 16 × 16

and 10 × 10, with filter size 4 × 4. The Nature library’s 2D con-

volution makes extensive use of vector intrinsics for loads, stores,

and arithmetic operations; however, its unrolling strategies are not

amenable to cases where the filter size is near but not equal to the

vector width.

In the case of matrix multiply, we also have access to propri-

etary hand-tuned code written for the Fusion G3 by a DSP expert

for a single fixed size, 2 × 3 by 3 × 3. The Diospyros-generated

kernel compiles with full equality saturation in 2.7 seconds and

produces runtime performance that is within 8% of the expert per-

formance (39 vs. 36 cycles). The Diospyros kernel and the expert

kernel perform the same number and type of vector operations (two

multiplies and four multiplyśaccumulates), but Diospyros’s logic to

0 200 400 600 800 1000 1200 1400 1600

Simulation cycles, 10×10 10×10 MatMul

10

30

60

120

180

NatureT
im
eo
ut

(s
ec
on
ds
)

Figure 6: Effect of search timeout onMatMul performance.

load elements into registers from main memory is less efficient. We

believe this performance gap could be eliminated with additional

engineering effort in improving code generation.

5.5 Timeout Ablation Study

Diospyros’s rewrite engine uses a timeout to emit suboptimal solu-

tions even when it does not reach full equality saturation. Shorter

timeouts stop Diospyros from completely vectorizing the kernel

but still emit an executable C kernel. Figure 6 shows the effect of in-

creasing the timeout on ourMatMul benchmark for the largest size,

10 × 10 by 10 × 10. With a 10-second timeout, the Diospyros gen-

erated kernel performs far better than a naive kernel (1,568 cycles),

but not as well as the size-agnostic implementation in the Nature

library (1,241 cycles). Increasing the timeout improves the quality

of the generated benchmark, ultimately saturating the E-graph and

finding a kernel that beats even the Nature library taking 847 cycles.

This formulation allows programmers to trade off compilation time

for runtime performance of the generated kernel.

5.6 Vectorization Ablation Case Study

As the results forQRDecomp at the 4×4 size demonstrate, symbolic

evaluation alone enables loop unrolling and common subexpression

elimination that yield performance benefits even without explicit

vectorization. To isolate the performance advantage of our vec-

torization strategy over other factors, we measure performance

for Diospyros with all vector rewriting rules disabled. Compiling

kernels with Diospyros without these vector-related rules (but with

symbolic evaluation, scalar rewrite rules, and common subexpres-

sion elimination) yields code that performs 2.2× better than the

best non-Diospyros baseline, compared to 3.1× with vector rewrite

rules. In 4 out of 21 kernels, the non-vectorized code is actually

faster than the Diospyros-vectorized code because the vendor’s

compiler can produce more heavily optimized scalar code. We be-

lieve Diospyros could improve on these cases with a better cost

model that reflects the overheads of vector packing and engineering

enhancements to the backend code generation.

5.7 Application Case Study

We implement a piece of a digital signal processing application

that can use Diospyros-generated kernels to observe their effect

in context. Sensing applications such as structure from motion

(SFM) [35] are rich with small-scale linear algebra kernels calls that

can become bottlenecks if they are implemented in a generic way.

This section studies a camera model computation from the Theia

open-source SFM package [35], which is representative of the kinds

of embedded vision workloads that are common on DSPs. Theia is

882

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

well optimized and uses the popular Eigen [12] library of matrix

kernels, but it is not specifically optimized for DSP architectures. It

uses a camera model to define how points in 3D space project into

a 2D image plane captured by the sensor array. We focus on this

initialization function in Theia’s camera model:

bool Camera::InitializeFromProjectionMatrix(

const int image_width,

const int image_height,

const Matrix3x4d projection_matrix)

The core functionality is in DecomposeProjectionMatrix, a function

that initializes camera parameters projecting to a rotation matrix

using a Jacobi SVD decomposition and then decomposing the ma-

trix using RQ decomposition. We port DecomposeProjectionMatrix

to Tensilica’s Fusion G3 DSP. We compare against a version us-

ing single-precision floating-point numbers (the original code uses

double-precision FP, but both the original and our optimized ver-

sions are accurate within 10
−6 even with single precision). We

found that 61% of the run time was spent on a call to a 3 × 3 QR

decomposition from the Eigen library.

We substitute a QR decomposition kernel generated by Diospy-

ros for the Eigen implementation to measure its effect on the overall

computation. QR decomposition is a linear algebra kernel that takes

as input a square matrix A and finds a right triangular matrix R

and an orthogonal matrix Q such that A = Q × R. Both Eigen and

our implementation use the Householder algorithm to iteratively

build both outputs, using a series of matrix multiplications along

with scalar computations. The number of floating point multipli-

cations is cubic in relation to the matrix size. We implement QR

decomposition with about 170 lines of imperative Racket. The re-

sulting SMT-based specification has over 65,000 calls to floating

point multiply, demonstrating the complexity of this kernel.

For the complete projection matrix computation, the Diospyros-

optimized version is 2.1× faster than the original Eigen-based imple-

mentation (30,552 vs. 64,025 cycles). The QR decomposition kernel

alone is an order of magnitude faster than Eigen’s implementa-

tion (see Section 5.4), and these savings translate to a substantial

speedup in the complete computation.

6 LIMITATIONS & PORTABILITY

While Diospyros’s design aims to generalize across DSP architec-

tures, we built the prototype in this paper to target the Tensilica

Fusion G3 specifically. Aspects of the rewriting strategy in Sec-

tion 3.2 reflect the Fusion G3’s ISA: namely, the vector width, the

available vector arithmetic operations, and the support for flexi-

ble łshufflež instructions for data movement. However, Diospyros’s

equality saturation engine is parametric over most of these target

detailsÐfor example, a simple compile-time setting controls the

target vector width.

To target a different DSP, a designer would need to add or remove

rewrite rules that reflect the available primitive operations. For

example, consider a DSP with a vectorized fast reciprocal operation.

To add support for this instruction, a user would need to: (1) add

a scalar rewrite rule like (/ 1 x)⇝ (recip x), relying on existing

support for division; (2) inform the rewrite engine that recip has a

vector equivalent, using a rule builder available in the Diospyros

library; and (3) add the target-specific intrinsic to the backend (1ś2

lines of code to map VecRecip to the vendor intrinsic).

An important assumption in Diospyros is that the target can

support flexible data movement between vector registers. Its rewrite

rules allow unrestricted data movement during equality saturation,

with a relatively abstract cost model that assigns a higher cost to

gathering data across different inputs or from non-zero scalars. We

expect this approach to be most appropriate for architectures with

a flexible łshufflež instruction that uses an index vector to change

positions within a vector. For architectures without this kind of

flexible data movement, the backend would need to fall back to

scalar operations more frequently, which would be more expensive.

7 RELATED WORK

Vectorizing compilers. Classical vectorization techniquesÐfrom

loop dependency analysis [1] to modern auto-vectorization tech-

niques [17, 19, 24]Ðtypically do not attempt to aggressively shuffle

data into irregular patterns. Existing techniques prioritize efficient

compilation over optimality: they are designed to run on millions

of lines of code but miss vectorization opportunities.

Previous work has used the Halide language [29] to target DSPs,

but has not supported exploration of a large search space of irregular

data movement strategies [39]. Other approaches can generate

target-specific shuffles to implement known permutations, but do

not find the permutation strategies themselves [9, 18]. Our search

strategy can discover novel shuffles and datamovement, automating

the labor-intensive hand-tuning process at the cost of increased

compilation time.

SLinGen [31], part of the SPIRAL project [10, 28], optimizes small

linear algebra kernels by first applying optimizations like loop re-

ordering and vectorization and then autotuning. Like SLinGen,

Diospyros works at a higher abstraction level to enable optimiza-

tions that would not be apparent at the assembly level. However, our

work uses equality saturation both to avoid hand-crafting specific

optimization patterns (including for custom functional units that

are common on DSPs) and to offer higher coverage of the search

space than autotuning.

Program synthesis. Program synthesis techniques can expend

compilation time to discover novel optimized programs. Barthe

et al. [3] develop an auto-vectorizer using inductive synthesis but

focus on general-purpose code rather than linear algebra and so do

not generate shuffles. Cowan et al. [7] generate quantized machine

learning kernels using syntax-guided synthesis. Their sketches

exploit the reduction structure of these kernels and so cannot invent

new data movement. MSL [41] is a synthesizer that generates bulk-

synchronous parallel programs. The synthesizer reduces the parallel

problem to a sequential one, uses a syntax-guided synthesis tool [30]

to solve the sequential problem, and then compiles the result to

message-passing parallel code.

Swizzle Inventor [27] infers permutations of data and compu-

tation (swizzles) that are optimized for GPU memory hierarchies.

Unlike Swizzle Inventor, Diospyros has the ability to change the

compute code itself (e.g., by fusing multiplyśaccumulates) rather

than just the data movement. Swizzle Inventor also requires users

to provide a sketch identifying the sites of possible swizzles; Diospy-

ros’s rewrite rule system does not require sketching.

883

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Unlike many synthesis techniques, Diospyros has the ability to

extract partial solutions if the synthesis process takes too long.

Recent work [26] explores synthesis techniques that are best effort,

returning partially valid solutions. Diospyros’s rewrite rules are

sound, and so the partial solutions it returns are always valid, but

the partial solutions are not provably optimal (even with respect to

the limited rewrite rules). This design allows Diospyros to avoid

expensive optimality proofs that can dominate synthesis time [5].

Incorporating unsound rewrite rules that can be repaired at code

generation time is an appealing direction for future work.

An earlier version of Diospyros [38] relied on syntax-guided

synthesis backed by an SMT solver. It generated optimized linear

algebra kernels but encountered scaling issues even on small (2×2)

kernels because it needed to reason about bit-level instruction se-

mantics during synthesis. Diospyros now abstracts away arithmetic

semantics and focuses on vectorization by using term rewrite in-

stead, so it can scale to kernels 10× larger than the SMT-based

version. In addition, the previous version of Diospyros required a

full program sketch in addition to a specification for each kernel.

The current Diospyros system allows users can reuse the same

rewrite rules across different kernels.

Term rewriting systems. Diospyros’s optimization approach is

based on equality saturation [36, 40], a technique for optimizing

compilation using equality graphs (E-graphs). Equality saturation

alleviates the phase ordering problem of traditional compilers by

applying rewriting rules to an E-graph, implicitly capturing all

possible phase orderings. Recent work expands equality satura-

tion to new compilation domains such as CAD models [22]. These

approaches exploit the insight that equality saturation does not

require backtracking so it admits an asymptotically more efficient

E-graph implementation [40]. Diospyros instantiates this approach

for vectorization, using equality saturation to exhaustively search

candidate vectorized programs that include data movement.

Denali [13] is an equality saturation-based superoptimizer for

Alpha assembly code. It saturates an E-graph using assembly-level

rewrite rules and then extracts an optimal program by using a

SAT solver to compute a detailed cost model. Diospyros’s rewriting

happens instead over an abstract DSL, which sacrifices some target-

specific optimality in favor of reasoning about data movement;

such higher-level optimizations are typically where expert DSP

developers focus their hand-tuning efforts.

8 CONCLUSION

Diospyros combines symbolic evaluation, equality saturation, and

translation validation to build an end-to-end compiler for high-

performance DSP code. Diospyros is extensible: users can bring

domain- and architecture-specific insights by adding new rewrite

rules to the equality saturation scheme. A main avenue for future

work is to exploit this flexibility to target more DSP targets and

other esoteric, customizable hardware architectures beyond DSPs.

ACKNOWLEDGMENTS

We thank Jacob Delgado-López for his implementation contribu-

tions and Armin Alaghi and Max Willsey for early feedback on this

work. Many thanks to the anonymous ASPLOS reviewers and our

shepherd, Shoaib Kamil, for their detailed feedback.

This work was supported in part by the Center for Applications

Driving Architectures (ADA), one of six centers of JUMP, a Semicon-

ductor Research Corporation program co-sponsored by DARPA. It

is also partially supported by the Intel and NSF joint research center

for Computer Assisted Programming for Heterogeneous Architec-

tures (CAPA). Support included NSF awards #1845952 and #1723715.

This material is based upon work supported by the NSF Graduate

Research Fellowship Program under Grant No. DGE-1650441. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

A ARTIFACT APPENDIX

Our artifact packages an environment to reproduce the results

presented. Specifically, we package:

• The Diospyros compiler: A search-aided compiler for gener-

ating vectorized DSP kernels.

• Implementation of benchmarks in Diospyros.

• Implementation of the Theia open-source application case

study.

The goal of our evaluation is to reproduce the claims presented

in the paper (Table 1, Figure 5, Figure 6) and to demonstrate the

robustness of our tool.

Note on proprietary tools. Our evaluation uses two proprietary

pieces of software: (1) the Tensilica G3 DSP simulator, and (2) the

Nature library that implements DSP primitives. These tools require

licenses and are not freely available. For the purposes of artifact

evaluation, we have made our research server available to reviewers

so that they can reproduce our studies (with permission from the

ASPLOS AEC chairs).

A.1 Artifact Meta-Information
• Algorithm: solver-aided compilation, equality saturation, symbolic

execution, vectorization

• Hardware: No hardware requirements for reviewer; our evaluation

targets the Tensilica Fusion G3 digital signal processor (DSP) but we

provide SSH access to a server with the necessary tools installed.

• Output: C/C++ code with intrinsics; the figures from the paper.

• Experiments: Implementation of Diospyros benchmarks, Theia

case study.

• How much disk space required (approximately)?: 20 GB

• Howmuch time is needed to prepare workflow (approx.)?: 15

minutes.

• Howmuch time is needed to complete experiments (approx.)?:

2-3 hours for required components, an additional 4.5 hours for re-

producing complete results.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT License

• Archived (provide DOI)?: 10.5281/zenodo.4331404

A.2 Description
We have split this artifact into two components:

(1) Diospyros compiler This is our publicly available compiler that

produces C/C++ code with intrinsics. This component can be run on

the provided VirtualBox virtual machine, or installed from source

and run locally on the reviewer’s machine.

884

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

(2) Evaluation on licensed instruction set simulator (ISS)Our com-

piler targets the Tensilica Fusion G3, which does not have an pub-

licly accessible compiler or ISS (the vendor provides free academic

licenses, but the process is not automated). To reproduce the cycle-

level simulation statistics from our paper, we have provided reviews

limited access to our research server (with permission from the AEC

chairs).

How to access. We have made our artifact in two formats:

• In the form a virtual image that comes with all the dependencies

pre-installed.

• In the form of an open-source code repository host on GitHub:

The instructions to download our virtual image or install from source

can be found here:

github.com/cucapra/diospyros/blob/asplosaec/evaluation/README.md

A.3 Installation
If you use the provided VirtualBox virtual machine, it has all dependencies

installed. To optionally run locally, follow the instructions for installing

prerequisites from the Diospyros repository:

github.com/cucapra/diospyros

A.4 Experiment Workflow
This artifact is intended to reproduce the 4 main experimental results from

the paper:

(1) Compiling benchmarks (Table 1; Figure 5) Compilation and

simulated cycle-level performance of 21 kernels (across 4 distinct

functions). We compare kernels compiled by Diospyros with kernels

compiled with the vendor’s optimizing compiler and optimized

library functions.

(2) Translation validation (Section 3.2) Translation validation for

all 21 kernels that the scalar specification and vectorized result (both

in our abstract vector domain specific language) are equivalent.

(3) Timeout ablation study (Figure 6)Ablation study on a single ker-

nel (10×10 by 10×10MatMul) over a range of equality saturation

timeouts.

(4) Application case study (Section 5.7) Speedup of an open source

computer vision application (Theia Structure From Motion library)

with a single kernel compiled by Diospyros (QR decomposition).

We provide scripts in Python to automate each of these 4 results; and

provide instructions for (1) running components locally or on the provided

VM, then (2) copying the new data to our research server to finish the

evaluation with the licensed instruction set simulator.

A.5 Evaluation and Expected Results
This artifact aims to let other researchers:

(1) Reproduce the statistics and charts in our paper (Table 1, Figure 5,

Figure 6).

(2) More easily reuse our techniques and implementation.

A.6 Notes
Because equality saturation times out after 3 minutes for some large kernels;

the results may differ slightly from the paper. However, the actual execution

of generated code on the instruction set simulator is deterministic.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN

Programs to Vector Form. In ACM Transactions on Programming Languages and
Systems (TOPLAS).

[2] Michail Alvanos and Pedro Trancoso. 2016. Video SIMDBench: Benchmarking the
compiler vectorization for multimedia applications. In 2016 Euromicro Conference
on Digital System Design (DSD). IEEE, 168ś175.

[3] Gilles Barthe, JuanManuel Crespo, Sumit Gulwani, César Kunz, andMarkMarron.
2013. From Relational Verification to SIMD Loop Synthesis. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).

[4] Dan Benanav, Deepak Kapur, and Paliath Narendran. 1987. Complexity of match-
ing problems. Journal of Symbolic Computation 3, 1 (1987), 203ś216.

[5] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing
Synthesis with Metasketches. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL).

[6] Cadence Design Systems, Inc. 2020. Tensilica Customizable Cores. https:
//ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable.

[7] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze.
2020. Automatic generation of high-performance quantized machine learning ker-
nels. In ACM/IEEE International Symposium on Code Generation and Optimization
(CGO).

[8] Stijn Eyerman and Lieven Eeckhout. 2010. Modeling critical sections in Amdahl’s
law and its implications for multicore design. In International Symposium on
Computer Architecture (ISCA). 362ś370.

[9] Franz Franchetti and Markus Püschel. 2008. Generating SIMD Vectorized Permu-
tations. In International Conference on Compiler Construction (CC).

[10] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. 2006. A rewriting
system for the vectorization of signal transforms. In International Conference on
High Performance Computing for Computational Science (VECPAR).

[11] Ricardo E Gonzalez. 2000. Xtensa: A configurable and extensible processor. IEEE
Micro 20, 2 (2000), 60ś70.

[12] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[13] Rajeev Joshi, Greg Nelson, and Keith H. Randall. 2002. Denali: A Goal-directed

Superoptimizer. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

[14] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016.
Verified Lifting of Stencil Computations. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI).

[15] Nikolaos Kyrtatas, Daniele G. Spampinato, and Markus Püschel. 2015. A Basic
Linear Algebra Compiler for Embedded Processors. In Design, Automation & Test
in Europe (DATE).

[16] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

[17] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. 2013. Exploit-
ing Vector Instructions with Generalized Stream Fusion. In ACM International
Conference on Functional Programming (ICFP).

[18] Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Püschel.
2011. Automatic SIMD Vectorization of Fast Fourier Transforms for the Larrabee
and AVX Instruction Sets. In Proceedings of the International Conference on Super-
computing.

[19] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Optimized
Superword Level Parallelism Framework. In ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA).

[20] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics 31, 5 (2015), 1147ś1163.

[21] Raul Mur-Artal and Juan D Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255ś1262.

[22] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured
CAD models with equality saturation and inverse transformations. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).

[23] Greg Nelson. 1980. Techniques for program verification. Ph.D. Dissertation.
Stanford University.

[24] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-Vectorization of Interleaved
Data for SIMD. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

[25] JoAnn M Paul and Brett H Meyer. 2007. Amdahl’s law revisited for single chip
systems. International Journal of Parallel Programming 35, 2 (2007), 101ś123.

[26] Hila Peleg and Nadia Polikarpova. 2020. Perfect is the Enemy of Good: Best-Effort
Program Synthesis. In European Conference on Object-Oriented Programming
(ECOOP).

[27] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodík. 2019. Swizzle Inventor: Data Movement

885

github.com/cucapra/diospyros/blob/asplosaec/evaluation/README.md
github.com/cucapra/diospyros
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://eigen.tuxfamily.org

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Synthesis for GPU Kernels. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[28] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M
Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, et al. 2005. SPIRAL: Code generation for DSP transforms. Proc. IEEE
93, 2 (2005), 232ś275.

[29] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman P. Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI).

[30] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[31] Daniele G. Spampinato, Diego Fabregat-Traver, Paolo Bientinesi, and Markus
Püschel. 2018. Program Generation for Small-Scale Linear Algebra Applications.
In ACM/IEEE International Symposium on Code Generation and Optimization
(CGO).

[32] Hauke Strasdat. 2015. Sophus ProjectWebsite. https://strasdat.github.io/Sophus/.
[33] Hauke Strasdat, Andrew J Davison, JM Martìnez Montiel, and Kurt Konolige.

2011. Double window optimisation for constant time visual SLAM. In IEEE
International Conference on Computer Vision (ICCV). 2352ś2359.

[34] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. 2019. OpenVSLAM: A
Versatile Visual SLAM Framework. In Proceedings of the 27th ACM International
Conference on Multimedia (Nice, France) (MM ’19). ACM, New York, NY, USA,
2292ś2295. https://doi.org/10.1145/3343031.3350539

[35] Chris Sweeney. 2016. Theia Multiview Geometry Library: Tutorial & Reference.
http://theia-sfm.org.

[36] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Satu-
ration: A New Approach to Optimization. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL).

[37] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine
for Solver-Aided Host Languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[38] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2020. A Synthesis-Aided Compiler for DSP Architectures (WiP Paper).
In ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES).

[39] Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde Corvino, and Rick Nas.
2017. Extending Halide to Improve Software Development for Imaging DSPs. In
ACM Transactions on Architecture and Code Optimization (TACO).

[40] MaxWillsey, Chandrakana Nandi, Yisu RemyWang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. egg: Fast and Extensible Equality Saturation. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

[41] Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama. 2014. MSL: A Synthesis
Enabled Language for Distributed Implementations. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

[42] Leonid Yavits, Amir Morad, and Ran Ginosar. 2014. The effect of communication
and synchronization on Amdahl’s law in multicore systems. 40, 1 (2014), 1ś16.

[43] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. 2003.
A comparison of empirical and model-driven optimization. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 63ś76.

886

https://strasdat.github.io/Sophus/
https://doi.org/10.1145/3343031.3350539
http://theia-sfm.org

	Abstract
	1 Introduction
	2 Motivating Example
	3 Rewriting for Vectorization
	3.1 Defining and Lifting Specifications
	3.2 Rewriting Strategy
	3.3 Searching for Rewrites
	3.4 Extraction

	4 Lowering & Code Generation
	5 Evaluation
	5.1 Implementation
	5.2 Methodology
	5.3 Kernel Benchmarks
	5.4 Kernel Performance Results
	5.5 Timeout Ablation Study
	5.6 Vectorization Ablation Case Study
	5.7 Application Case Study

	6 Limitations & Portability
	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Artifact Meta-Information
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results
	A.6 Notes
	A.7 Methodology

	References

