
Perfectly Reliable Message Transmission on

Undirected Graphs

A Project Report

submitted in partial fulfillment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

by

Ashwinkumar B V

under the guidance of

PROF. C. PANDU RANGAN

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2008

Certificate

This is to certify that this project report titled Perfectly Reliable Message

Transmission on Undirected Graphs submitted by Ashwinkumar B V in

partial fulfillment for the award of the degree of Bachelor of Technology in

Computer Science and Engineering, is a bona-fide record of work carried out

by him under my guidance and supervision in the Department of Computer

Science and Engineering, Indian Institute of Technology, Madras.

Place : Chennai Prof. C. Pandu Rangan

Acknowledgments

I must thank Prof. C. Pandu Rangan for being such a wonderful guide and showing me

the world of Theoretical Computer Science. I still remember how his first course in Discrete

Mathematics drew me. I also want to thank Prof Ravi Sundaram and Prof Raj for allowing me

to come to North Eastern University where I had some of my most memorable experiences.

This is the first place where I got a true flavor of research.

I want to thank the head of the department Prof. Timothy A Gonsalves for letting me use

the department facilities. I would like to express my gratitude to Prof. Aravind, Shankar and

Kama under whom I took some of my most cherished courses. CS Department has been one

of the best places with all the professors begin very friendly and flexile. It has also been a

place where I learnt the most, not only in academics but also in practical issues.

It wouldn’t have been possible to maintain the sanity hadn’t it been for some of the most

insane moments I had with my very close friends muthu, vinod , sk, rakshit, kc, atulya, gayab,

julie and kamu. I will always remember the crazy chat I and atulya used to have when going

for coffee at gurunad. Jamuna has been a second home to me and coming to think of leaving

it makes me nostalgic.

I want to thank balu, kurma and naresh for being very supportive and friendly in our com-

bined goal of research. I would never forget their help when I was sick in Boston. I also want

to thank george, sameer, bundy, setia and other CS junta for being very friendly and fun going.

George has been one of the nicest guys and the one person in our batch I admire the most. It

will be unfair to not mention sameer as he was one guy who worked the most in our batch but

was at the receiving end most of the time.

I should also thank Ashish and Arpita for introducing me to some very nice problems one

of which turned into this thesis. It was fun and I had a great time doing research with them.

The long evening discussions and fun talks will always remain in my memory. I should thank

them once again for offering to write my first paper(and other papers :)).

I want to thank my seniors Ravishankar, Aravindan, Varad, Karthekeyan, Harsha, Kaushik

and Muthu for their guidance in my application for higher studies and their advice. I want to

thank all the members of the TCS lab Harini, Sharmila, Vivek, Masilamani, Chandrashekar,

Ambika and others for making the lab conducive for research and fun place to stay.

Last but not the least, none of this would have been possible if it weren’t for the sacrifices

of my mother, father and grand parents. Thank you all.

iii

To my Grand Father

iv

Abstract

We consider for the first time the problem of trade off between the Network Connectivity,

Phase Complexity and Communication Complexity of Reliable Communication Tolerating

Mixed Adversary [1]. The problem of reliable communication of a message m by a sender

S to a receiver R in an unreliable network involves transporting m from S to R in a reliable

manner. The unreliability of the network is modeled via an adversary controlling the nodes

of the network according to different fault models. This problem traditionally known as per-

fectly reliable message transmission(PRMT) in the literature is used as a black box in most of

the multi party computation(MPC) and Byzantine protocols. This problem was traditionally

studied in the presence of Byzantine faults in the network. We study the problem in a more

generalized fault model. Specifically we study the problem in the standard model of abstract-

ing the network as a graph and categorizing the nodes based on their fault models. We prove

a lower bound on the Phase Complexity given the Network Connectivity and Communication

Complexity and provide a corresponding protocol with optimal Phase Complexity(up to con-

stant factor). This solves an open problem posed in [2]. To the best of my knowledge, this is

the first time such a treatment has been done. This thesis is based on a joint work with Arpita

Patra, Ashish Choudhary, Kannan Srinathan and C. Pandu Rangan.

Table of Contents

Acknowledgments ii

Abstract v

List of Symbols viii

1 Introduction 1

1.1 Models and Settings . 2

1.1.1 Network . 2

1.1.2 Adversary . 2

1.1.3 Abstraction . 3

1.2 Motivation and Significance . 4

1.3 Our Contributions . 5

1.4 Organization of thesis . 7

2 Coding Theory Preliminaries and Existing Results 8

2.1 Existing Results . 8

2.2 Coding Theory Preliminaries . 10

3 Bounds for Single Phase PRMT 12

3.1 Single phase . 12

4 Lower Bound 17

4.1 Lower Bound on Phase Complexity of PRMT Against A(tb,tf) 17

5 Upper Bound 25

5.1 Upper Bound on Phase Complexity of PRMT Against A(tb,tf) 25

5.2 A Three Phase PRMT Protocol . 25

5.3 A Worst Case O(D) Phase PRMT Protocol 26

6 Conclusion 32

6.1 Conclusion . 32

6.2 Open Problems and Future Directions . 32

References 34

List of Publications from this Thesis 36

vii

List of Symbols

• N - Network

• P - Set of nodes in the network

• E - Set of links in the network

• S - Sender

• R - Receiver

• m - message

• n - connectivity of the graph

• A(tb,tf) - Adversary

• tb - number of Byzantine nodes

• tf - number of fail-stop nodes

• l - length of message to be sent

• b - number of field elements communi-

cated

• c - constant

• ∏
,
∏′ - protocols

• F - Finite field

• X - n− tf

• d - constant

• a - 2× d

• N - similar to n

• T - similar to tf

• MPC - Multi Party Computation

• PRMT - Perfectly Reliable Communi-

cation

CHAPTER 1

Introduction

Intuitively one feels that adding redundancy to the system increases its reliability. This is

formally used in most of the distributed algorithms to achieve security and reliability. We

can even see this in real life examples like (a) Storage of data in multiple computers to deal

with system crashes, (b) Critical mails are usually sent through multiple means such as e-

mail/post/courier. But redundancy is accompanied by extra work which results in an inherent

inefficiency. In this thesis, we explore the limits of this inefficiency inherent in a certain

model of communication where reliability is achieved by the phenomenon of distribution and

interaction.

We see that in a typical scenario the Source and Receiver which need to communicate

are part of a network. The faults in the network are characterized as some limit on the faulty

nodes. The requirement for the protocol is to simulate a reliable channel between Source and

Receiver. This problem can be handled by coding theory which corrects the errors by adding

redundancy. We see that when we combine coding theory with the power of interaction it

decreases the necessity for redundancy. But this comes with cost of larger number of phases

for interaction.

In keeping with the tradition of describing Distributed Algorithms we state the problem

informally in terms of a battlefield scenario. There is army which is returning after a long

battle. Through several routes for their return journey among which all but one are under the

control of their enemy. The enemy is strong and it will kill any soldiers passing through the

route it controls. As the army doesn’t know the safe route one would think the best strategy is

to go in equal number in each route. Only 1
num routes

of the army will reach back. But we in

this thesis give an algorithm where most of the army(albeit a constant fraction of them) will

reach their kingdom and also prove that no other algorithm can do better than ours.

1.1 Models and Settings

1.1.1 Network

Consider a synchronous undirected network denoted by N = (P , E) where P is the set

of nodes and E ⊂ P × P is the set of links. In the perfectly reliable message transmission

(PRMT) problem overN , a sender S ∈ P , wishes to send a message m, which is a sequence of

` field elements from a finite field F, to a receiver R ∈ P , in such a manner that R recovers the

message without any fault (perfectly), in spite of the presence of an adversaryA(tb,tf)(Defined

in section 1.1.2). The reason for modeling network unreliability as an adversary is done so that

worst case lower and upper bounds can be proved. All the n nodes in the network are mod-

eled as probabilistic interactive Turing Machines. In this work, we study in the synchronous

settings. The underlying network N is said to be synchronous when all the players share a

common global clock. All messages sent are sent on a clock ’tick’, and are received on the

next ’tick’.

1.1.2 Adversary

The adversary in this work is denoted by A(tb,tf). A(tb,tf) possesses unbounded computing

power and can corrupt disjoint sets of at most tb and tf nodes in Byzantine and Fail-stop

fashion respectively, in a centralized manner. Moreover, the adversary is adaptive; i.e, the set

of nodes which are going to be under the control of A(tb,tf) is decided dynamically depending

2

upon the data seen by the adversary so far during the protocol execution. Once a node is

under the control of the adversary, it is going to be so for the rest of the protocol. If a node

P is fail-stop corrupted by A(tb,tf), then the adversary can force P to crash at will at any time

during the execution of the protocol but can not access its internal data and can not force

its behavior to deviate from the protocol. So as long as P is alive, it honestly follows the

protocol. Also once P is crashed, it never becomes alive again. If a node P is Byzantine

corrupted by A(tb,tf), then the adversary has full access to the internal data of P and can force

P to deviate from the protocol arbitrarily. Hence A(tb,tf) can also listen on these nodes. We

assume that S and R do not share any information, what so ever, before the beginning of the

protocol. Also, the protocol specification is public and known to everybody, includingA(tb,tf).

However, A(tb,tf) will not know the random coin tosses used by S and R in the protocol. Also

as A(tb,tf) has unbounded computing power, we cannot solve the PRMT problem using public

key cryptography, digital signatures etc, as they are all based on the assumption that adversary

has polynomial time computing power. The adversary we study is known as threshold mixed

adversary in the literature. But we note that the lower bound proved in Chapter 4 holds even

against polynomial adversaries and it should be fairly easy to model it for random errors.

1.1.3 Abstraction

Like the most of the literature we follow the model used by Dolev et.al [3]. We see that if some

intermediate node between S and R is under the control of the adversary. Hence all the paths

between S to R passing through that node can be modeled by a single wire between S and R.

By the above argument the network can be abstracted as vertex disjoint paths(also known as

wires) from S to R. This follows from by Menger’s theorem [4] which states that a graph is

c− (S,R)-connected iff S and R are connected by at least c vertex disjoint paths.

3

The adversary which controls tb nodes in Byzantine fashion and tf nodes in fail-stop

fashion now controls tb wires in Byzantine fashion and tf wires in fail-stop fashion. This is

possible as the adversary can position himself at some of the nodes in the min-cut of the graph.

1.2 Motivation and Significance

The PRMT problem is well-motivated for it being one of the fundamental primitives used by

all fault-tolerant distributed algorithms like Byzantine agreement, multi-party computation etc

(see [3, 5, 6, 7, 8, 9, 10] and their references). All these popular fault-tolerant distributed algo-

rithms assume that the underlying network is a complete graph, thereby implicitly assuming

the existence of a PRMT protocol that can simulate a complete graph over the actual network

which is seldom a complete graph itself. Chapter 7 of [11] solves the problem of Byzantine

agreement for general graphs. In literature all these problems have been solved in crypto-

graphic model also. The PRMT problem was first proposed and solutions is a different model

was given by [3].

Here we will argue about the model of Network and Adversary. The reason for consider-

ing an adversary who can corrupt in both Byzantine and fail-stop is of theoretical interest as it

is a more generalized adversary. Modeling every node as Byzantine may be an overkill when

the adversary may not be powerful enough to corrupt every node in Byzantine fashion. This

is one step closer towards a very generalized adversary. Also when we look at the solutions of

Distributed Algorithms in cryptographic model the Byzantine nodes will behave like Fail-stop

nodes. But keys over some of the nodes may be compromised which behave like Byzantine

in the absence of authentication. Even this problem is nicely captured in our model. Hence if

we try to design networks with very high resiliency and lower connectivity in different models

4

our bound comes into the picture.

1.3 Our Contributions

The efficiency of any PRMT protocol may be expressed by three parameters, namely,

1. Connectivity (n) of the network

2. Communication complexity (b), which is the total number of field elements communi-

cated by S and R

3. Phase Complexity (r).

Let us first consider the scenario where we work with minimal connectivity; viz n = 2tb +

tf + 1. From the basic results of coding theory (as given in chapter 3), any single phase

PRMT protocol has to communicate Ω(n`) field elements to reliably send m, containing `

field elements. Hence it is clear that a PRMT protocol with communication complexity of less

than n`, must run for several phases. Hence a natural and fundamental question here is the

following:

Given n = 2tb + tf + 1 and b < n`, what is the minimum value of r? Do we

have such an O(r) phase efficient PRMT protocol?

It is clear that for any PRMT protocol, ` ≤ b ≤ n`. We may refer a protocol with communica-

tion complexity of b = c`, where c is a constant independent of n, as communication optimal

protocol. Extending the above question to this very interesting and important case, we may

ask the following:

When n = 2tb + tf + 1 and b = O(`), what is the minimum value of r? Do we

have such an O(r) phase efficient PRMT protocol?

Note that if such a protocol exists, it will be simultaneously optimal in connectivity, commu-

nication complexity and phase complexity. So far, we have considered only minimally con-

nected network but if we have higher connectivity, then again the required number of phases

may be reduced. Specifically, when n ≥ 2tb + tf + 1 and b < n`, we ask for minimum r and

5

a corresponding phase optimal protocol. Unifying all the above questions, we formulate the

following most generic question, which is the holy grail for PRMT problem:

Given an n-connected network (n ≥ 2tb + tf + 1) and a value b, where ` ≤ b <

n`, what is the minimum number of phases r needed to reliably send m, where

|m| = `, within O(b) communication complexity?

In this report, we completely resolve the above question by deriving exact expression for lower

bound for the phase complexity of PRMT protocols and also design a PRMT protocol whose

total phase complexity matches this bound, thus proving that our bound is asymptotically tight.

From our general result, we obtain several interesting results on the inherent trade-off available

between the three parameters, namely n, b and r. We also derive several surprising corollaries

for specific instances. For example our general result imply that when tb = 0, n = tf + 1

and b = O(`), then any PRMT protocol requires Ω(log(tf)) phases to send m. The PRMT

protocols existing in the literature usually attempts to optimize one of the parameters and

rarely two of the parameters mentioned above [8, 12]. However, our protocol is simultaneously

optimal in all the three parameters.

Surprise Factor: As mentioned above, if tb = 0, n = tf + 1 and b = O(`), then any PRMT

protocol requires Ω(log(tf)) phases to send m containing ` field elements. This is surpris-

ing because from Theorem 2.1.3, against Byzantine adversary, there exists a three (constant)

phase PRMT protocol, which achieves reliability with constant factor overhead. These two

results seem to be counter intuitive, since Byzantine adversary is more powerful than fail-stop

adversary (Byzantine adversary can maliciously change the information over the wires, where

as fail-stop adversary can only block the communication over a wire). Here we informally

justify that it is not so (a formal argument is given by the proof of Theorem 4.1.1). In a min-

imally connected network tolerating only Byzantine adversary, we have n = 2tb + 1 wires.

So the number of corrupted wires is less than half of the total number of wires. This allow

us to do error detection/correction in three phases, resulting in a three phase PRMT protocol

with a communication complexity of O(`) (see the PRMT protocol of [8]). However, in a

minimally connected network tolerating only fail-stop adversary, we have only n = tf + 1

wires between S and R, of which there is only one un-corrupted wire. It is this reduced con-

6

nectivity (in comparison to the case of Byzantine adversary) that does not allow us to design a

constant phase PRMT protocol against fail-stop adversary in a minimally connected network,

with communication complexity of O(`).

Remark 1 Note that sending m reliably in a single phase, even by broadcasting it along all

the n wires, has communication complexity of b = n`. Hence, we are interested only in the

case where ` ≤ b < n`. Also if tf = 0 and n ≥ 2tb + 1, then m can be sent reliably in

three phases by communicating O(`) field elements [8] and hence is optimal in all the three

parameters. However, the lower bound and protocol given in this report, considers a mixed

adversary, where tb, tf ≥ 0.

Remark 2 Throughout the report, we use X to denote n − tf ; i.e., X = (n − tf). Hence

n = X + tf .

Remark 3 In our protocols, for simplicity, we assume that Byzantine adversary does not block

the wires under its control. Our protocols can be easily adapted to tolerate such a behavior

by the Byzantine adversary, without affecting the phase and communication complexity.

1.4 Organization of thesis

In Chapter 2 we mention some of the existing results and preliminary results which will be

used in the thesis. Following this we prove certain bounds on single phase protocols in Chap-

ter 3. After this in Chapter 4 we prove lower bounds on the phase complexity which is one of

the main contributions of this thesis. Finally we end the work by giving a protocol which runs

in optimal number of phases in Chapter 5.

7

CHAPTER 2

Coding Theory Preliminaries and Existing Results

In this section we will review the existing results and the basic coding theory preliminaries

necessary for proving the lower bound and the protocol construction.

2.1 Existing Results

PRMT Tolerating Byzantine Adversary: PRMT problem was first introduced and solved

by Dolev et.al [3] under the presence of a tb-active Byzantine adversary Atb , who can corrupt

at most tb nodes in the network in Byzantine fashion. Dolev et.al abstracted the network in

the form of vertex disjoint paths (also known as wires) between S and R The reason for such

an abstraction is as follows: suppose some intermediate node between S and R is under the

control of the adversary. Then all the paths between S and R, irrespective of their length,

passing through that node are also compromised. Hence, all the paths between S to R passing

through that node can be modeled by a single wire between S and R. The characterization of

PRMT given by Dolev et.al is as follows:

Theorem 2.1.1 ([3]) PRMT over an undirected network N tolerating Atb is possible iffN is

(2tb + 1)-(S, R)-connected.

In [7], Srinathan et.al have given the lower bound on the communication complexity of any

single phase PRMT protocol tolerating Atb . The lower bound is as follows:

Theorem 2.1.2 ([7]) Any single phase PRMT protocol over n ≥ 2tb +1 wires communicates

Ω
(

n`
n−2tb

)
field elements to reliably send a message containing ` field elements against Atb .

Interestingly, in [8], Arpita et.al have shown that if more than one phase is allowed, then the

communication complexity of PRMT protocols can be reduced significantly. The result of

Arpita et.al is as follows:

Theorem 2.1.3 ([8]) Let N be an undirected network, under the influence of Atb such that S

and R are connected by n = 2tb + 1 wires. Then three phases are sufficient for the existence

of any PRMT protocol which sends a message containing ` field elements by incurring a

communication complexity of O(`) field elements.

The above theorem says that in a minimal connected network against Byzantine adversary,

three phases are sufficient for any PRMT protocol to achieve reliability with constant factor

overhead.

PRMT Tolerating Mixed Adversary: Studying mixed adversary in the context of PRMT

is well motivated. In a typical large network, certain nodes may be strongly protected and

few others may be moderately/weakly protected. An adversary may only be able to fail-stop

a strongly protected node, while he may affect in a Byzantine fashion a weakly protected

node. Thus, we may capture the abilities of an adversary in a more realistic manner using two

parameters tb and tf , where tb and tf are the number of nodes under the influence of adversary

in Byzantine and fail-stop respectively. Also it is better to grade different kinds of disruption

done by adversary and consider them separately rather than treating every kind of fault as

Byzantine fault. Doing so will be an “overkill”. Recently, Arpita et.al [13] have given the

characterization for PRMT over undirected networks tolerating a mixed adversary A(tb,tf).

Theorem 2.1.4 ([13]) PRMT over an undirected network N tolerating A(tb,tf) is possible iff

N is (2tb + tf + 1)-(S, R)-connected.

PROOF: The necessity of the above condition follows from the following argument. Let Π

be a PRMT protocol over N , where there exists n = 2tb + tf wires between S and R. Now

consider the following adversarial strategy: the adversary blocks the communication over tf

wires. Now consider the network N ′ that is induced by N on deleting these tf paths from N
(this can be interpreted as an adversary blocking the communication over tf paths). It follows

that N ′ is not a (2tb + 1)-(S,R)-connected network. Evidently, if Π is a PRMT protocol on

N , then Π′ is a PRMT protocol on N ′, where Π′ is the protocol Π restricted to the players in

N ′. However, from Theorem 2.1.1, we know that Π′ is non-existent. Thus Π is impossible

too. The sufficiency of the above condition is shown by the following protocol: Let S and R

9

are connected by n ≥ 2tb + tf + 1 wires. S sends the message m through all the n wires. R

recovers the message by taking majority among the received values. 2

Now we demonstrate that Theorem 2.1.4 shows more fault tolerance in comparison to

Theorem 2.1.1. Let N be a network where S and R are connected by n = 4 wires. Then

from Theorem 2.1.1, the maximum number of Byzantine faults that can be tolerable is one.

However, from Theorem 2.1.4, it is possible to tolerate one fail-stop fault, in addition to one

Byzantine fault.

2.2 Coding Theory Preliminaries

Let Ch(tb,tf) denotes a noisy channel, where at most tf and tb locations can be arbitrarily

erased and changed respectively during the transmission of a codeword. A block error-erasure

correcting code encoding a message of k field elements to a codeword of n field elements is

an injective mapping C : Fk → Fn(n > k), where F is the underlying field. The encoding

function is used in conjunction with a decoding function D : Fn → Fk with the property that

if its input differs from a valid codeword in at most tb locations, apart from at most tf erasures,

then D outputs the message corresponding to that codeword. We say that the code corrects tb

Byzantine errors and tf erasures. Clearly, such a decoding function will always exist if any

two valid codewords differ in at least 2tb + tf + 1 locations.

The maximum attainable efficiency of any block error-erasure correcting code is subject

to the Singleton Bound, given by the following lemma:

Lemma 2.2.1 (Singleton bound [14]) Let C be an error-erasure correcting code which reli-

ably transmits k field elements by communicating a total of n field elements and has a distance

of d. Then n ≥ k + d− 1.

For a (tb, tf) error-erasure correcting code, the distance d (which is the minimum Hamming

distance between any two codewords) is at least 2tb + tf + 1. Thus we have the following

corollary:

Corollary 2.2.2 Let C be a (tb, tf) block error-erasure correcting code. Then k ≤ n− (2tb +

tf).

10

We now give the definition of a special kind of block error-erasure correcting code called

Reed-Solomon code, which we use in our protocols.

Definition 2.2.3 ([14]) Let F be a finite field and α1, α2, . . . αn be distinct elements of F.

Given k < n ≤ |F|, and an arbitrary block B = [m1 m2 . . . mk], the encoding function

for the Reed-Solomon code is defined as [pB(α1) pB(α2) . . . pB(αn)] where pB(x) is the

polynomial
∑k−1

i=0 mi+1x
i.

We denote RS code by RS(n, k), which encodes a message block of size k into a codeword

of size n.

Theorem 2.2.4 ([14]) The Reed-Solomon code meets the singleton Bound.

From Corollary 2.2.2 and Theorem 2.2.4, we get the following corollary.

Corollary 2.2.5 Let C be a (tb, tf) block error-erasure correcting RS code. Then k ≤ n −
(2tb + tf).

Theorem 2.2.6 gives the number of errors which can be corrected and detected by RS codes.

Theorem 2.2.6 ([14]) Let C denote the RS(n, k) codeword for a message block of size k.

Suppose the codeword is sent over the channel Ch(tb,tf). Let n′ denotes the size of the received

codeword C ′, where n′ ≥ n − tf . Then RS decoding can correct up to c Byzantine errors in

C ′ and simultaneously detect additional d Byzantine errors in C ′ iff n′ − k ≥ 2c + d.

11

CHAPTER 3

Bounds for Single Phase PRMT

3.1 Single phase

We now prove the lower bound on the communication complexity of any single phase PRMT

protocol tolerating A(tb,tf). The bound is obtained by showing the “equivalence” between

single phase PRMT protocol and error-erasure correcting code. More specifically, we show

that the maximum attainable efficiency of any single phase PRMT against A(tb,tf) is bounded

by the maximum attainable efficiency of a (tb, tf) error-erasure correcting code, given by the

Singleton Bound.

We now describe a single phase PRMT protocol PRU-SP(m, `, n, tb, tf , k) againstA(tb,tf),

obtained by using the corresponding RS(n, k) code. In the protocol S and R are connected

by n ≥ 2tb + tf + 1 wires, wi, 1 ≤ i ≤ n, under the influence of A(tb,tf). S wants to send m

where |m| = `.

Protocol PRU-SP(m, `, n, tb, tf , k): Single Phase PRMT

• S breaks m into blocks B1,B2, . . . ,B`/k, each consisting of k field elements, where k = (X−2tb), X =
n− tf . If ` is not an exact multiple of k, a default padding is used to make ` mod k = 0.

• For each Bj, S computes the RS(n, k) codeword of Bj, 1 ≤ j ≤ `/k denoted by (cj1 cj2 . . . cjn) in
parallel. S sends cji along wire wi, 1 ≤ i ≤ n.

• R receives the (possibly corrupted/erased) cji’s for all the blocks of m and applies the RS decoding
algorithm to each of them and constructs all blocks Bj in parallel. R concatenates Bj’s to recover the
message m.

Lemma 3.1.1 Protocol PRU-SP correctly sends m by communicating O
(

n`
(X−2tb)

)
field ele-

ments.

PROOF: Follows from Corollary 2.2.5 and working of the protocol. 2

The reverse process is equally valid - given a single phase PRMT protocol againstA(tb,tf),

we can convert it into an (tb, tf) block error-erasure correcting code, whose efficiency is

bounded by Singleton Bound (Corollary 2.2.2). Thus, the maximum attainable efficiency

for any single phase PRMT protocol is also subject to the Singleton Bound. Thus we have the

following theorem.

Theorem 3.1.2 Let S and R be connected by n ≥ 2tb + tf + 1 wires, under the influence

of A(tb,tf). Then any single phase PRMT protocol communicates Ω
(

n`
X−2tb

)
field elements to

reliably send m, where |m| = ` and X = n− tf . Moreover, the bound is tight.

PROOF: Follows from the above discussion. 2

Remark 4 The conversion from single phase PRMT protocol to an error-erasure correcting

code is straightforward if the messages sent along each wire in the protocol are of same

length. Suppose however, there exists a protocol Π that does not have this symmetry property

and beats the Singleton bound. Then consider the protocol Π′ which consists of n sequential

executions of protocol Π with the identities of the wires being “rotated” by a distance of

i in the ith execution. Clearly this protocol achieves the symmetry property by “spreading

the load”; further its message expansion factor is equal to that of Π. It therefore beats the

Singleton bounds as well, which is a contradiction. Thus without any loss of generality, we

assume that the messages sent along each wire is of same length.

Protocol PRU-SP has another important property given in the following theorem.

Theorem 3.1.3 If R in advance knows the exact identity of α ≤ tb wires which are Byzantine

corrupted, then the protocol PRU-SP(m, `, n, tb, tf , k) will reliably transmit m in a single

phase, using block size k = (X − 2tb) + α, by communicating O
(

n`
(X−2tb)+α

)
field elements.

PROOF: Since R knows α wires which are Byzantine corrupted, it simply ignores these wires

and therefore the connectivity/set of active wires reduces to n−α. Among the remaining wires,

at most tb − α could be Byzantine corrupted. Substituting these values in Corollary 2.2.5, we

get k ≤ n − α − 2(tb − α) − tf = (X − 2tb) + α where X = n − tf . Hence PRU-SP will

work correctly with k = (X − 2tb) + α. 2

Before we end our discussion on single phase PRMT, we present a two phase PRMT

protocol SP-REL (based on RS code which is a specific instance of error-erasure correcting

code), that possesses both error correction and error detection capabilities of the underlying

error-erasure correcting code. Such a protocol is used later in designing phase optimal PSMT

13

protocol. SP-REL is based on the following principle: S and R guess that adversary will

fail-stop at most tf − kf wires and corrupt at most tb
2

wires. If it indeed happens, then S

can reliably send tb
2

+ kf extra field elements (in addition to what is permitted by Singleton

Bound) in a single phase to R. However if adversary either fail-stop tf − kf + 1 (or more)

wires or corrupts more than tb
2

wires, then R will not be able to recover anything. However, R

either comes to know the identity of at least tf − kf + 1 fail-stop wires or detects more than
tb
2

Byzantine faults. In the later case, R can broadcast back the received information to S, who

after local verification can identify more than tb
2

Byzantine corrupted wires.

Protocol SP-REL (m,n, tb, tf , kf)

1. S performs the same computation and communication as done in protocol PRU-SP, except that now S
divides m into blocks B1, B2, . . . , Bp, each consisting of k field elements, where k = (X−2tb)+ tb

2 +kf .

2. Let R receives information over a wires, of which at most tb could be corrupted. Thus R receives a

values, corresponding to each of the p codewords.

3. IF a < n − tf + kf then R broadcasts to S, “ERROR1” signal along with the count of the number of
wires and their identity over which R has not received any information (which is n − a) and terminates
the protocol. /* In this case, more than tf − kf fail-stop errors has occurred.*/

4. IF a ≥ n− tf +kf then R applies RS decoding algorithm to each of the p received codewords and correct
tb

2 errors and simultaneously detect additional tb

2 faults (if it had occurred) in each of the p codewords in
parallel.

5. If after correcting tb

2 errors, the decoding algorithm does not detect additional faults in any of the p

received codewords, then R correctly recovers Bj, 1 ≤ j ≤ p. R then concatenates them to recover m,
broadcasts “SUCCESS” signal to S and terminates the protocol.

6. IF ∃e ∈ {1, 2, . . . , p}, such that after correcting tb

2 errors, the decoding algorithm detects additional
faults (at most tb

2) in the eth received codeword, then R broadcasts the eth received codeword, along with
index e and “ERROR2” signal to S. R also broadcasts the identity of wires which failed to deliver any
information and terminates. /* In this case, more than tb

2 errors has occurred. If there are more than one
e, then R randomly selects one.*/

Local Computation by S

• IF S receives ”SUCCESS” signal, then it does nothing. IF S receives ”ERROR1” signal, then S comes to know
the identity of n − a wires which failed to deliver any information to R. ELSE, S receives the eth codeword, as
received by R and after comparing it with original eth codeword, S identifies more than tb

2 Byzantine corrupted
wires.

Lemma 3.1.4 (Correctness:) In SP-REL, if at most tf−kf wires get fail-stop corrupted and

at most tb
2

wires get Byzantine corrupted, then R will be able to recover m. Otherwise, S will

14

either come to know the identity of at least tf − kf + 1 fail-stop or at least tb
2

+ 1 Byzantine

corrupted wires.

PROOF: We consider the following three cases:

1. More than tf − kf wires get fail-stop corrupted during first phase:

In this case, irrespective of the number of Byzantine errors, R will come to know the

exact identity of more than tf − kf wires which are fail-stop corrupted and broadcasts

their identity to S.

2. At most tf − kf and tb
2

wires get fail-stop and Byzantine corrupted respectively

during first phase:

We consider the worst case, where exactly tf − kf wires get fail-stop corrupted. Thus,

R will receive an n′ = n − (tf − kf) length RS codeword for each Bi, which is RS

encoded using a polynomial of degree k − 1 = (X − 2tb) + tb
2

+ kf − 1. Substituting

the value of n′ and k in Theorem 2.2.6, we find that RS decoding can correct c = tb
2

and detect additional d = tb
2

Byzantine errors in each codeword. Since the number of

Byzantine errors in each codeword is at most tb
2

, the decoding algorithm will correct

them (and does not detect any additional error) and recover each Bi (and hence m)

correctly.

3. At most tf − kf wires get fail-stop corrupted but more than tb
2

wires get Byzantine

corrupted during first phase:

Suppose more than tb
2

errors occur during the transmission of eth codeword, where

e ∈ {1, 2, . . . , p}. In this case, from the previous argument, the decoding algorithm

will correct tb
2

errors and will detect additional errors (at most tb
2

) in the eth received

codeword. So R will come to know that more than tb
2

errors occurred during the trans-

mission of eth codeword. So R broadcasts the eth received codeword to S, who after

locally comparing it with the original eth codeword finds the identity of more than tb
2

Byzantine corrupted wires.

2

Remark 5 In SP-REL, R can reliably send the identity of fail-stop corrupted wires by broad-

casting a bit vector of size n, where ith bit of the vector is 1(0), if wire wi (not) delivered any

15

information to R. This requires communicating O
(
n ∗ n

log(|F|)

)
field elements. In the rest of

the report, whenever we use SP-REL, we assume that R sends back the identity of fail-stop

wires using this bit-vector technique.

Lemma 3.1.5 The communication complexity of SP-REL is O

(
|m|n

(X−2tb)+
tb
2

+kf

)
+O

(
n2

log(|F|)

)
+

O(n2).

PROOF: Follows from the working of the protocol. 2

SP-REL bring to the fore an important property (given in Corollary 3.1.6) which holds for

any single phase PRMT protocol and is used to derive the lower bound on phase complexity

in the next chapter.

Corollary 3.1.6 Let S and R be connected by n ≥ 2tb + tf + 1 wires and S wants to reliably

send m to R. If S in advance knows that adversary will not do any Byzantine corruption (i.e.,

tb = 0) and will fail-stop at most tf − kf wires, 1 ≤ kf ≤ tf − 1, then S has to communicate

at least N`
(X+kf)

field elements to reliably send m. Moreover the minimum number of wires that

the adversary needs to fail-stop in order that R does not recover m is tf − kf + 1. Thus if

S does not know in advance the number of fail-stop corruptions the adversary may perform,
N`

X+kf
is a trivial lower bound on the number of field elements to be sent by S, so that either R

recovers m or comes to know the identity of at least tf − kf + 1 fail-stop corrupted wires The

above expression can also be viewed as `× X+tf
X+kf

.

16

CHAPTER 4

Lower Bound

4.1 Lower Bound on Phase Complexity of PRMT Against A(tb,tf)

We now derive a nontrivial lower bound on phase complexity for any PRMT protocol which

transmits ` field elements by communicating O(b) field elements against A(tb,tf), where ` ≤
b < n`. Recall that according to the definition of PRMT, R should correctly output the

message with probability one (no error probability). We assume that the protocol specification

is public and adversary is also aware of the steps of the protocol. Accordingly, adversary

devices his strategy. However, adversary has no access to the internal random coin tosses of

S and R. Without loss of generality, we assume that during each phase, the information sent

over each wire is of same length because using a similar argument given in Remark 4, we can

show that any PRMT protocol which sends un-equal sized information over each wire, does

no better than a protocol which sends equal sized information over each wire.

Theorem 4.1.1 Let S and R be connected by n ≥ 2tb + tf + 1 wires such that tf > 0 and

tf > (n− tf). Then any PRMT protocol from S to R under the influence of A(tb,tf), must run

for Ω

(
log(

tf
n−tf

)

log(cb
`

)

)
= Ω(D) phases for transmitting m, where |m| = `, with a communication

complexity of O(b) field elements, where ` ≤ b < n` and c > 1 is a positive constant.

Remark 6 The lower bound of Ω(D) phases does not hold good if tf = 0. If tf = 0, then

n ≥ 2tb + 1. So from Theorem 2.1.3, three phase is necessary and sufficient to optimally send

` field elements by communicating O(`) field elements. The lower bound also does not holds

good if tf ≤ (n − tf). If tf ≤ (n − tf), then we can send ` field elements by communicating

O(`) field elements in constant phases. A three phase PRMT protocol for this case is given in

section 5.2 (see Corollary 5.2.2).

PROOF: We present an adversarial behavior, against which no PRMT protocol can send m

with a communication complexity O(b) in less than Ω(D) phases. The Byzantine adversary

remain passive throughout the protocol. Any lower bound derived with this assumption is

surely a lower bound when Byzantine adversary is active. So, here only fail-stop adversary is

active. Once a wire (corrupted in fail-stop fashion) fails to deliver information through it, it is

marked as faulty wire and can be removed from the set of active (currently used) wires. There-

fore, in the beginning of any protocol, number of active wires is n and number of undisclosed

fail-stop wires is tf . Whenever a wire (fail-stop corrupted) stops the communication, it reveals

its corrupted status and thus number of undisclosed fail-stop wires reduces. Let the number of

undisclosed fail-stop wires after ith disclosure be denoted by Li. Initially L0 = tf . Informally,

the adversarial strategy is as follows: During each phase, adversary checks how much portion

of m, S is trying to send to R. This he can find out from the protocol specification. If the size

of the portion that S tries to send during a particular phase is more than a “specific” limit, then

the adversary does the minimum number of fail-stop corruption, so that R can recover only

a specific “sub-portion” of the portion sent by S. Otherwise, the adversary does no fail-stop

corruption. Specifically, after the ith disclosure of fail-stop corrupted wires, adversary does

the following:

• If S tries to send a portion of size q ≤ ` log(cb
`

) log(tf)

log(Li) log(
tf

n−tf
)

=
` log(tf)

log(Li)D then adversary

does nothing.

• Otherwise adversary tries to fail-stop the minimum number of wires so that R

can recover only ` log(tf)

log(Li)D portion of the total message that has been sent by S

(the total message is strictly greater than ` log(tf)

log(Li)D). If this is not possible then

adversary will fail-stop in such a way that the number of undisclosed fail-stop

wires reduces to tεf , where ε is a fixed positive fraction and then remains inactive

in the rest of the protocol execution.

In the sequel, we consider three possible cases and prove for each of the cases the number of

phases is indeed Ω(D) and also show that such an adversarial act is mountable against any

protocol.

Remark 7 Throughout our computation, we use logarithm to the base e. This is because it

18

will make the use of calculus easier. Also this wont change the lower bound by more than a

constant factor.

1. Claim 4.1.2 If adversary does not become active throughout the protocol, then the

protocol terminates in Ω(D) phases.

PROOF: The reason why adversary remained inactive throughout the protocol is that S

never tried to transmit more than ` log(tf)

log(tf)D field elements in any phase. Hence, denoting

the maximum message size as q that has been sent in any phase, we get,

q ≤ ` log(tf)

log(L0)D ≤ ` log(tf)

log(tf)D =
`

D because L0 = tf

So the minimum number of phases P , required to send ` field elements is given by,

P ≥ `
q

= D = Ω(D). Hence the claim. 2

2. Claim 4.1.3 If the adversary fail-stop in such a way that the number of undisclosed

fail-stop wires at the end of the protocol remains strictly greater than tεf , then the

protocol runs Ω(D) phases.

PROOF: Clearly, in this case the maximum message size sent by S in any phase is given

by,

q ≤ ` log(tf)

log(tεf)D
=

` log(tf)

ε log(tf)D =
`

εD
So even if at most q field elements are communicated in each phase, the protocol takes

P ≥ `
q

= εD = Ω(D) phases to send ` field elements. Hence the claim. 2

3. Claim 4.1.4 If the adversary fail-stop in such a manner that the number of undisclosed

fail-stop wires becomes less than or equal to tεf , then also the protocol takes Ω(D)

phases.

PROOF: So in this case the number of undisclosed fail-stop wires reduces down to less

than or equal to tεf . Suppose the adversary uses k phases denoted as Ph1, Ph2, . . . , Phk

to reduce the number of undisclosed wires from tf to tεf . We will show that k, the num-

ber of phases in which fail-stop corruption occurs is Ω(D), excluding other phases

where adversary does nothing. Let the number of undisclosed wires after Phi reduces

from Li−1 to Li. So recording the count of undisclosed wires after every disclosure

(of adversary) starting with the initial count of L0 = tf , we get a decreasing sequence

19

tf , L1, L2, . . . , Lk−1, t
ε
f . Let α1, α2, . . . , αk be the number of field elements communi-

cated by S in the corresponding phases. In all these k phases, S must have tried to send

more than ` log(tf)

log(Li)D field elements of the message and the adversary exposed the min-

imum number of wires (hence after Phi reducing number of undisclosed wires from

Li−1 to Li) such that only ` log(tf)

log(Li)D field elements of the total message is recoverable by

R. Then by Corollary 3.1.6, the number of field elements αi, 1 ≤ i ≤ k transmitted in

Phi is given by αi ≥ ` log(tf)

log(Li−1)D × X+Li−1

X+Li
. This is so because during phase Phi, the

number of active wires is X+Li−1, the number of unknown errors is Li−1 and S tried to

sent at least ` log(tf)

log(Li−1)D field elements. The above mentioned attack by the adversary is

mountable since adversary is aware of αi (adversary knows the protocol specification)

and can solve ` log(tf)

log(Li)D ×
X+Li−1

X+x
= αi for x and accordingly blocks only Li−1−x wires

so that R recovers only ` log(tf)

log(Li)D field elements of the message and Li−1 reduces to Li.

Since the communication complexity of the protocol is O(b), the sum of all αi’s should

20

be bounded by d b, for some constant d ≥ 1. Hence

d b ≥
k∑

i=1

αi ≥ ` log(tf)

log(tf)D × X + tf
X + L1

+
` log(tf)

log(L1)D × X + L1

X + L2

+ . . . (4.1)

+
` log(tf)

log(Lk−1)D × X + Lk−1

X + tεf

≥ ` log(tf)

log(tf)D × X + tf
X + L1

+
` log(tf)

log(tf)D × X + L1

X + L2

+ . . .

+
` log(tf)

log(tf)D × X + Lk−1

X + tεf
/*

1

log(Li)
≥ 1

log(tf)
*/

≥ ` log(tf)

log(tf)D

[
X + tf
X + L1

+
X + L1

X + L2

+ . . . +
X + Lk−1

X + tεf

]

d bD
`

≥ X + tf
X + L1

+
X + L1

X + L2

+ . . . +
X + Lk−1

X + tεf

d bD
`k

≥
(

X+tf
X+L1

+ X+L1

X+L2
+ . . . + X+Lk−1

X+tεf
)

k
/* Dividing both side by k ∗ /

≥ (
X + tf
X + L1

× X + L1

X + L2

× . . .× X + Lk−1

X + tεf
)

1
k /*as AM ≥ GM */

=

[
X + tf
X + tεf

] 1
k

Thus,
[
d bD
`k

]k

≥
[

X + tf
X + tεf

]
= X

1 + (
tf
X

)

1 +
tεf
X

≥ 1 + (
tf
X

)

1 + (
tf
X

)ε
≥ (

tf
X

)

2(
tf
X

)ε
≥ 1

2k

(
tf
X

)(1−ε)

/* since tf > X */

[
2d bD

`k

]k

≥
(

tf
X

)1−ε

⇒
[

a b log(
tf

n−tf
)

`k log(cb
`
)

]k

−
(

tf
n− tf

)1−ε

≥ 0 /* a = 2d , a ≥ 2 ∗ /

Let Y =

[
a b log(

tf
n−tf

)

`k log(cb
`

)

]k

−
(

tf
n−tf

)1−ε

. So, for our desired PRMT protocol the value of

k should be such that Y is non-negative.

Lemma 4.1.5 Any protocol which takes k rounds the corresponding value of Y should

be non negative.

PROOF: By the above argument. 2

Lemma 4.1.6 Y =

[
a b log(

tf
n−tf

)

`k log(cb
`

)

]k

−
(

tf
n−tf

)1−ε

is an increasing function for all k ≤

21

ab log(
tf

n−tf
)

` e log(cb
`

)
= abD

e `

PROOF:

Y =

[
a b log(

tf
n−tf

)

`k log(cb
`
)

]k

−
(

tf
n− tf

)1−ε

(4.2)

Y =

(
Z

K

)k

− Z ′ where Z =
a b log(

tf
n−tf

)

` log(cb
`
)

and Z ′ =
(

tf
n− tf

)1−ε

log(Y + Z ′) = k log(Z)− k log(k)

1

Y + Z ′
dY

dK
= log(Z)− k log(k)− 1

dY

dK
=

(
Z

k

)k [
log(

Z

K e
)

]

Now putting dY
dK
≥ 0, we get

(
Z

k

)k [
log(

Z

K e
)

]
≥ 0 (4.3)

⇒ Z

K e
≥ 1

⇒ k ≤ Z

e
=

a b log(
tf

n−tf
)

e ` log(cb
`
)

=
abD
e `

2

Lemma 4.1.7 D
ac

< abD
e `

PROOF: Recall that c ≥ 1 and a ≥ 2. Also e = 2.73... Thus,

a ≥ 2 ⇒ a2 ≥ 4 ⇒ 1 ≥ 4

a2
⇒ c >

4

a2
>

e

a2
⇒ a

e
>

1

ac
(4.4)

Hence D
ac

< aD
e

< abD
` e

, since b ≥ ` 2

Lemma 4.1.8 The value of Y =
[

abD
`k

]k −
(

tf
n−tf

)1−ε

is non-positive at k = D
a c

for all

a ≥ 2 and some specific positive fraction ε.

PROOF: We prove this by contradiction. So let Y be non-negative at k = D
a c

. This

implies at k = D
a c

,
[

abD
`k

]k ≥
(

tf
n−tf

)1−ε

holds. So, putting k = D
a c

in this relation and

22

simplifying we get,
[
a2bc

`

] D
a c

≥
(

tf
n− tf

)1−ε

D
ac

[
log(

cb

`
) + 2 log(a)

]
≥ (1− ε) log(

tf
n− tf

) /* Taking log on both sides */

log(
cb

`
)

[
1

ac
− (1− ε)

]
+

2 log(a)

ac
≥ 0 /* putting value of D and simplifying */ (4.5)

As the value of c and ε are under the control of adversary he chooses then to be c =

a10 + 1{c ≥ 210 + 1} and ε = 0.4.

2 log(a)

ac
≥ log(

cb

`
)

[
(1− 0.4)− 1

ac

]
/* ε = 0.4 */ (4.6)

2 log(a)

ac
≥ log(c)

[
0.6− 1

ac

]
/* b ≥ l */

2 log(a)

ac
≥ 10× log(a)

[
0.6− 1

ac

]
/* c ≥ a10 */

2

ac
≥ 6− 10

ac
/* canceling log(a) on both sides*/

12

ac
≥ 6

2 ≥ ac

The final equation is obviously wrong as a ≥ 2 and c = a10 + 1.Hence this is a

contradiction that Y is non-negative at k = D
a c

. Hence the lemma. 2

By Lemma 4.1.6, 4.1.7, 4.1.8 we can see that Y is negative for all values of k ≤ D
ac

.

Hence by Lemma 4.1.5, any valid protocol Y should be non-negative for which k >

D
a c

= Ω(D).

Thus, in all three cases, we proved that the number of phases required is Ω(D). This completes

the proof of Theorem 4.1.1. 2

We now dispose two important corollaries of our lower bound result.

Corollary 4.1.9 Any PRMT protocol over n = tf + 1 wires, influenced by Atf (i.e., tb = 0),

must run for Ω(log(tf)) phases to reliably send ` field elements by communicating O(`) field

elements.

Thus against only fail-stop adversary over a minimal connected network, it takes log(tf)

phases to achieve reliability with constant factor overhead. Comparing this with Theorem 2.1.3,

23

we find that even though fail-stop adversary is much weaker than Byzantine adversary, it takes

more phases against fail-stop adversary to achieve reliability with constant factor overhead.

The reason behind this surprising result was explained earlier in Chapter 3. Theorem 2.1.3

and Corollary 4.1.9 defines the phase complexity lower bounds for two extreme cases. The

intermediate scenario is captured by the following corollary which brings out the fundamental

inherent trade-off between phase complexity and communication complexity in the presence

of A(tb,tf).

Corollary 4.1.10 Let S and R be connected by 2tb + tf + 1 wires, influenced by A(tb,tf), such

that tb, tf > 0 and tf > (n− tf). Then any PRMT protocol must run for Ω(log(
tf
tb

)) phases to

reliably send ` field elements by communicating O(`) field elements.

24

CHAPTER 5

Upper Bound

5.1 Upper Bound on Phase Complexity of PRMT Against A(tb,tf)

Let S and R be connected by n ≥ 2tb + tf + 1 wires, under the influence of A(tb,tf). We now

provide a PRMT protocol PRMT-II, which terminates in O(D) phases and sends a sufficiently

large message m containing ` field elements (` will be fixed shortly) by communicating O(b)

field elements where ` ≤ b < n` and D =
log(

tf
n−tf

)

log(cb
`

)
. This shows that the bound proved in

Chapter 4 is tight. We first design a three phase PRMT protocol called PRMT-I, which is used

in PRMT-II.

5.2 A Three Phase PRMT Protocol

In protocol PRMT-I, S and R are connected by N ≥ 2tb + T + 1 wires, of which at most

tb could be Byzantine corrupted and T ≤ tf could be fail-stop corrupted. Also n − tf =

N − T = X . The protocol reliably sends M containing L field elements by communicating

O(NL
X

) field elements, where L ≥ N2.

Theorem 5.2.1 Protocol PRMT-I reliably sends M , containing L field elements, in at most

three phases by communicating O(NL
X

) field elements, where X = (n−tf) = N−T ≥ 2tb+1

and L ≥ N2.

PROOF: We prove the theorem for the worst case, when during Phase I, the fail-stop adversary

blocks all T wires under its control. So during Phase I, R receives n′ = N−T values for each

Bj, 1 ≤ j ≤ z, which are RS encoded using polynomials of degree k−1 = (X−2tb)+
tb
2
−1.

Putting the values of n′ and k in Theorem 2.2.6, we find that RS decoding can correct c = tb
2

errors and simultaneously detect additional d = tb
2

errors in each of the z received codewords.

If at most tb
2

errors occur during first phase, then the decoding algorithm will correct these

errors and will not detect additional errors in any received codeword. So R will recover each

Bj (and hence m).

On the other hand, if more than tb
2

errors occur during Phase I, then ∃e, e ∈ {1, 2, . . . , z},

such that eth received codeword contains more than tb
2

corrupted values. So, RS decoding will

correct tb
2

errors and simultaneously detect the remaining faults (which is at most tb
2

). Hence

R sends back eth received codeword to S, who after comparing it with the original codeword

of Be, finds the identity of more than tb
2

faults and saves them in Lfault. By broadcasting

Lfault, S informs the identity of these faulty wires to R. Finally S re-sends M by using PRU-

SP(M, |M |, N, tb, T, |Lfault|), which from Theorem 3.1.3 will be executed successfully.

During Phase I, S communicates O

(
|M |

(X−2tb)+
tb
2

∗N

)
= O(NL

X
) field elements because

|M | = L. During Phase II, R communicates O(N2) field elements by broadcasting the eth re-

ceived codeword. During Phase III, S re-sends M by executing PRU-SP(M, |M |, N, tb, T, |Lfault|),
which communicates O

(
|M |

(X−2tb)+|Lfault| ∗N
)

= O(NL
X

) field elements because tb
2

< |Lfault| ≤
tb. Since, L ≥ N2, the total communication complexity is O(NL

X
). 2

Corollary 5.2.2 1. If X ≥ T , then X = Θ(N) because N = X + T 1. Hence, in this

case protocol PRMT-I sends L field elements by communicating O(L) field elements,

where L ≥ N2.

2. If T > X , then T = Θ(N) because N = X +T . Hence, in this case protocol PRMT-I

sends L field elements by communicating O(LT
X

) field elements, where L ≥ N2.

5.3 A Worst Case O(D) Phase PRMT Protocol

Here S and R are connected by n ≥ 2tb + tf + 1 wires. The protocol PRMT-II has the

following properties: (i) If X ≥ tf , then it sends m in three phases by communicating O(|m|)
(recall b ≥ |m| = `) field elements. (ii) If X < tf , then either it reliably sends the message

m or reduces the number unknown fail-stop errors from tf to X , both in O(D) phases by

communicating O(b) field elements, where |m| = `, D =
log(

tf
n−tf

)

log(cb
`

)
and b ≥ |m|. In the later

case when fail-stop faults reduces from tf to X , the message is sent using three phase PRMT

protocol PRMT-I. To design the protocol, we use protocol SP-REL (Chapter 3) as a black-

box. In PRMT-II, N and T denote the number of active wires (which are used in the protocol)

26

Protocol PRMT-I - A Three Phase PRMT Protocol
Phase I: S to R

1. S divides M into blocks B1, B2, . . . , Bz , each of size (X − 2tb + tb

2), where z = d |M |
X−2tb+

tb
2

e. For each

Bj , 1 ≤ j ≤ z, S computes a RS codeword of size N , denoted by [Cj1 Cj2 . . . CjN]. Finally, through
wire wi, 1 ≤ i ≤ N , S sends Cji, 1 ≤ j ≤ z.

Phase II: R to S

1. R receives information through N ′ wires where N − T ≤ N ′ ≤ N . R applies RS decoding algorithm
to each of the received codewords and tries to correct tb

2 errors and simultaneously detects additional tb

2

errors in each codeword.

2. IF the decoding algorithm does not detect additional faults (after correcting tb

2 errors) in any codeword, R
correctly recovers each Bj , concatenates them, recovers M and terminates the protocol by broadcasting
”SUCCESS” signal (see Theorem 5.2.1).

3. ELSE if ∃e ∈ {1, 2, . . . , z}, such that decoding algorithm detects additional errors (after correcting tb

2

errors) in the eth received codeword, then R broadcasts an ”ERROR” signal, the eth received codeword
and index e. R also sends an n length bit-vector, indicating the index of the wires over which it has not
received any information. /* If there are more than one e, then R randomly selects one. */

IF S receives ”SUCCESS” signal, then S terminates the protocol. ELSE S receives ”ERROR” signal, index e,
eth codeword as received by R in Phase I and initiates Phase III as follows:
Phase III: S to R

1. S compares the original and the received (from R) eth codeword to identify more than tb

2 faulty wires
(which delivered incorrect information to R during Phase I). S saves the identity of corrupted wires in a
list Lfault. S broadcasts Lfault to R, re-sends M by executing PRU-SP(M, |M |, N, tb, T, |Lfault|) and
terminates the protocol.

Local Computation by R (If it has Sent ”ERROR” Signal During Phase II)
R correctly receives Lfault and comes to know the identity of |Lfault| > tb

2 Byzantine corrupted wires. R finally
recovers M as in PRU-SP(M, |M |, N, tb, T, |Lfault|) and terminates the protocol.

and the number of unknown fail-stop errors respectively during the execution of the protocol.

Notice that N and T always maintain the relationship N − T = n− tf = X . Both N and T

are global variables which are updated by S and R in parallel, after every disclosure of fail-

stop corrupted wires. Initially N = n and T = tf . S and R also maintain a list of active wires

which is periodically updated during the execution of PRMT-II. We now describe PRMT-II.

Size of `: If PRMT-II calls PRMT-I to send M ′, then M ′ will contain at least one chunk

of m of size `
D . Since PRMT-I requires the minimum message size (L) to be N2 (where

N ≤ n), we take |m| = ` = n3, which ensures that |M ′| = n3

D ≥ n2 ≥ N2.

27

Protocol PRMT-II (m,n, tb, tf): S and R are connected by n ≥ 2tb + tf + 1 wires

1. IF X ≥ tf , then S sends m by executing the three phase PRMT-I protocol (see Lemma 5.3.1). /*
X = n− tf */

2. IF (X < tf) AND (D < 1), then S sends m by executing the three phase PRMT protocol PRMT-I (see
Lemma 5.3.2)

3. IF (X < tf) AND (D ≥ 1), then S and R does the following:

(a) S and R initializes N = n, i = 1 and T = tf . S breaks m into chunks B1, B2, . . . , Bq each of size
`
D (so q = D).

(b) While (i ≤ q) AND (T > X) DO /* X is now N − T = n− tf */

i. S sets kf = T `
cb and executes SP-REL(Bi, N, tb, T, kf) by using the block size as k =

(X − 2tb) + tb

2 + kf and waits for feed-back. /* Recall that k is the block-size which is used
in SP-REL.*/

ii. Success: If S receives ”SUCCESS” signal, then S increments i and continue with the next
iteration. /* S concludes that R has received Bi correctly */

iii. Failure because more than T − kf wires are blocked by the adversary: If S receives
”ERROR1” signal, a value a and an n length bit vector (whose ith position equal to 0 indicates
that R has received no information over wire wi), then S and R globally sets N = N−a, T =
T − a. S and R also remove the a wires (whose corresponding bit value in the bit-vector is 0)
from the list of active wires

iv. Failure due to the occurrence of more than tb

2 Byzantine Fault: If S receives ”ERROR2”
signal, index e and eth codeword (as received by R), then after doing local verification, S
identifies more than tb

2 Byzantine corrupted wires, which it saves in a list Lfault. S then
broadcasts Lfault to R and then both S and R globally set N = N − |Lfault| and remove the
wires in Lfault from the list of active wires. Now number of Byzantine faulty wires in the set
of active wires is less than tb

2 . /* T remains unchanged in this case. */

(c) If i > q then terminate the protocol. Else S sends the remaining portion of the message, say M ′,
consisting of chunks Bi, Bi+1, . . . , Bq by executing the three phase PRMT protocol PRMT-I.

The analysis of PRMT-II is divided into two cases: (i) When X ≥ tf (ii) When X < tf .

The second case has further two sub-cases, depending upon whether D ≥ 1 or D < 1.

Lemma 5.3.1 If X ≥ tf , PRMT-II sends m in three phases by communicating O(`) field

elements.

PROOF: Follows from Corollary 5.2.2(1), by substituting N = n, T = tf and L = |m|, where

|m| = n3. 2

Lemma 5.3.2 If X < tf and D < 1 then PRMT-II sends m in three phases by communicat-

28

ing O(b) field elements.

PROOF: If X < tf then n = Θ(tf) because n = X + tf . Also if D < 1 then it implies

log(cb
`
) > log(

tf
n−tf

) ⇒ cb
`

>
tf

n−tf
⇒ b >

tf `

c(n−tf)
⇒ b >

tf `

cX
. Thus, we require to send ` field

elements by communicating O
(

tf `

X

)
field elements. Since ` ≥ n3, PRMT-II have to send

n3 field elements by communicating O
(

n3tf
X

)
field elements. Now substituting T = tf , N =

n, L = n3 and N = Θ(T) in Corollary 5.2.2(2), we find that this can be done in three phases

by executing PRMT-I. 2

Lemma 5.3.1 and Lemma 5.3.2 prove the properties of PRMT-II for two cases. Now we

analyze the properties of PRMT-II for the case when X < tf and D ≥ 1. In this case, the

execution sequence is as follows: S sequentially selects a chunk Bi of size `
D from the message

m. S then executes SP-REL to send Bi using (X − 2tb) + tb
2

+ kf as the block-size, where

kf = T `
cb

. In this process either (a) R recovers Bi or (b) S identifies at least T − kf + 1 fail-

stop corrupted wires or more than tb
2

Byzantine corrupted wires, which subsequently S and R

removes from their list of active wires. In the first case R receives Bi and then S selects the

next chunk Bi+1 and repeats the same process. In the later cases, depending upon the type of

identified faulty wires, S re-sets the block-size and tries to re-send the same Bi by executing

SP-REL. Note that if more than tb
2

Byzantine corrupted wires are identified, then the same

block size is used to re-send Bi, whereas if more than T − kf fail-stop corrupted wires are

identified then block-size becomes (X − 2tb) + tb
2

+ kf , where kf is reduced at least by a

factor of (cb
`
). This process will continue until the entire m is received by R or the number

of unknown fail-stop faults T becomes less than or equal to X . When number of unknown

fail-stop faults T becomes less than or equal to X , S sends the remaining portion of m, say

M ′, by executing the three phase PRMT protocol PRMT-I, which will optimally send M ′ by

communicating O(|M ′|) field elements. Thus the principle of the protocol is as follows: In

each phase, S tries to send a fixed portion of m using SP-REL. Now either SP-REL will be

successful or both S and R comes to know the identity of some faulty wires. After repeating

this process for O(D) iterations S will be able to send m to R.

Remark 8 In PRMT-II, when SP-REL gets executed successfully, R does not communicate

the identity of the wires which stops communication (at most T − kf). Therefore, the list of

29

active wires remains unchanged at both ends. This does not affect communication complexity

and phase complexity of the protocol because if in some phase, SP-REL is executed success-

fully, then S sends the next `
D portion of m using the same value of k, in the next phase. So

if the number of errors remains same this time also, SP-REL will be executed successfully,

otherwise more than T − kf errors will be revealed.

Lemma 5.3.3 In PRMT-II, if SP-REL fails due to more than tb
2

Byzantine errors, then in

the remaining phases, SP-REL can fail only due to occurrence of more than T − kf fail-stop

errors.

PROOF: In the protocol, once SP-REL fails due to the occurrence of more than tb
2

Byzan-

tine errors, then both S and R will know the identity of these wires. Now in the remain-

ing executions of SP-REL, at most tb
2
− 1 Byzantine errors can occur. If in all these re-

maining executions, each time at most T − kf fail-stop errors occur, then R will receive

n′ = N − (T − kf) values for each codeword, which are RS encoded using a polynomial of

degree k − 1 = (X − 2tb) + tb
2

+ kf − 1. Putting these values in Theorem 2.2.6, we find that

decoding algorithm will be able to correct c = tb
2

errors in the codewords and hence SP-REL

will be successful. 2

Lemma 5.3.4 In PRMT-II, if during any phase SP-REL fails due to occurrence of more than

T − kf fail-stop errors, then T is reduced at least by a factor of cb
`

.

PROOF: From Lemma 3.1.4, if SP-REL fails due to the occurrence of more than T − kf fail-

stop errors, then the number of unknown fail-stop errors reduces to at least T −(T −kf +1) =

kf − 1 = T `
cb
− 1. 2

Theorem 5.3.5 If X < tf and D ≥ 1 then PRMT-II terminates in O(D) phases.

PROOF: In this case, the phase complexity of PRMT-II is bounded by the number of times

SP-REL protocol is executed in the protocol. There are q = D chunks of m and SP-REL is

executed at least once for each of them. If each chunk is sent successfully in a single attempt,

then the phase complexity of PRMT-II is O(D). On the other hand, from Lemma 5.3.4, each

un-successful execution of SP-REL reduces the number of unknown fail-stop errors T at least

by a factor of cb
`

. Also, from Lemma 5.3.3, SP-REL can fail only once due to Byzantine

errors. Hence the number of un-successful executions of SP-REL required to bring the num-

30

ber of unknown fail-stop errors T , from its initial value of tf to n − tf (= X) is bounded by

O(
log(

tf
n−tf

)

log(cb
`

)
) = O(D). Once, T becomes less than or equal to X , then the remaining message

is sent in three phases by executing PRMT-I. Thus even if adversary alternately allows some

(un)successful executions of SP-REL followed by some unsuccessful(successful) executions

of SP-REL, the phase complexity of PRMT-II remains as O(D). 2

Theorem 5.3.6 The communication complexity of PRMT-II is O(b), where ` ≤ b < n` and

` ≥ n3.

PROOF: In PRMT-II, if step 1 is executed, then from Lemma 5.3.1, the communication com-

plexity of the protocol is O(`) = O(b). Similarly, if step 2 is executed, then from Lemma 5.3.2,

the communication complexity of the protocol is O(b). However, if step 3 is executed, then

the communication complexity of PRMT-II is computed as follows:

To send a chunk Bi of size `
D , S executes SP-REL with block-size k = (X − 2tb) +

tb
2

+ kf = (X − 2tb) + tb
2

+ T `
cb

. Also at every stage of the protocol N = T + X . From

Lemma 3.1.5, the number of field elements sent by S during an execution of SP-REL is given

by
`
D

(X−2tb)+
tb
2

+T `
cb

∗ (X + T). Since, T > X , by increasing the numerator and decreasing

the denominator, the above expression is bounded by `
D ∗ dT

T `
cb

= dcb
D = O

(
b
D

)
, where d is a

positive constant. From Theorem 5.3.5, the overall phase complexity of PRMT-II is O(D).

Thus, the total number of field elements communicated by S is O(b). In the protocol, each time

SP-REL fails, R broadcasts an n length bit vector, which requires communicating O
(

n2

log(|F|)

)

(see Lemma 3.1.5 and Remark 5). Since, in PRMT-II, the number of failures of SP-REL is

bounded by O(D), the total number of field elements communicated by R in the protocol is

O
(

n2D
log(|F|)

)
. Also, if SP-REL fails due to the occurrence of more than tb

2
Byzantine errors,

then R broadcasts a codeword, incurring a communication complexity of O(n2). Moreover,

from Lemma 5.3.3, this will happen only once. Since |m| = n3 and b ≥ |m|, the overall

communication complexity of PRMT-II is O(b) + O
(

n2D
log(|F|)

)
+ O(n2) = O(b). 2

31

CHAPTER 6

Conclusion

6.1 Conclusion

The efficiency of any PRMT protocol is expressed using three parameters; the connectivity

of the underlying network (n), the number of phases (r) and the number of field elements

(b) communicated during the execution of the protocol. One of the major contributions of

this thesis is a novel way to establish a lower bound for the number of phases and bring out

a relation describing trade-off existing between connectivity, communication complexity and

phase complexity. The second major contribution is a protocol that works on any sufficiently

connected network that simultaneously are phase optimal and communication optimal. As a

significant and highly non-intuitive corollary is that any PRMT protocol requires Ω
(
log(

tf
tb

)
)

phases, to send ` field elements with communication complexity O(`), in a network that is

2tb + tf +1 -connected. The lower bound in some sense shows that a very highly fault tolerant

network cannot be built without an increase either in communication complexity or number

of rounds needed for the communication.

6.2 Open Problems and Future Directions

We believe that the proof for lower bound is of independent interest which can be applied to

solve problems in other models. The result of this work is negative. It is worthwhile to look

into the following problems.

• Generalize this result to different models such as non-threshold model, hyper-graphs,

random fault models, multi-cast. In the random fault model one looks at the expected

behavior instead of worst case behavior. The result to multi-cast can be easily gener-

alized if there is a efficient way to find deterministic network coding with certain nice

properties. Certain work for non-threshold adversary from a polynomial set has been

done in [15].

• In this result we get a lower bound and a corresponding protocol albeit to some constant

factor. To get a Protocol and a lower bound to exact constant would be worthwhile and

would reveal additional insights into the problem. Also the minimum message size is

quite large for the proposed protocol. One more important direction to pursue would be

to bring this down as well as prove better lower bounds for very small message sizes.

• The result in this work concentrates on phase complexity. There has been some re-

search done in the direction of round complexity in [2]. This problem is also important.

33

References

[1] Ashwinkumar B. V, Arpita Patra, Ashish Choudhary, Kannan Srinathan, and C. Pandu

Rangan. On tradeoff between network connectivity, phase complexity and communica-

tion complexity of reliable communication tolerating mixed adversary.

[2] K. Srinathan. Secure distributed communication. PhD Thesis, IIT Madras, 2006.

[3] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission.

JACM, 40(1):17–47, 1993.

[4] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115,

1927.

[5] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In Proc. of

Advances in Cryptology: Eurocrypt 2002, LNCS 2332, pages 502–517. Springer-Verlag,

2003.

[6] M. Franklin and R. Wright. Secure communication in minimal connectivity models.

Journal of Cryptology, 13(1):9–30, 2000.

[7] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message

transmission. In Proc. of Advances in Cryptology: CRYPTO 2004, LNCS 3152, pages

545–561. Springer-Verlag, 2004.

[8] A. Patra, A. Choudhary, K. Srinathan, and C. Pandu Rangan. Constant phase bit opti-

mal protocols for perfectly reliable and secure message transmission. In Proc. of IN-

DOCRYPT 2006, volume 4329 of LNCS, pages 221–235. Springer Verlag, 2006.

[9] S. Agarwal, R. Cramer, and R. de Haan. Asymptotically optimal two-round perfectly

secure message transmission. In C. Dwork, editor, Proc. of Advances in Cryptology:

CRYPTO 2006, LNCS 4117, pages 394–408. Springer-Verlag, 2006.

[10] A. Patra, A. Choudhary, and C. Pandu Rangan. Constant phase efficient protocols for

secure message transmission in directed networks. In ACM PODC, pages 322–323,

2007.

[11] Nancy A. Lynch. Distributed Algorithms. HARCOURT ASIA PTE LTD, 2000.

[12] A. Narayanan, K. Srinathan, and C. Pandu Rangan. Perfectly reliable message transmis-

sion. Information Processing Letters, 11(46):1–6, 2006.

[13] A. Patra, AshwinKumar B. V, A. Choudhary, K. Srinathan, and C. Pandu Ran-

gan. Bit optimal and phase optimal protocols for perfectly reliable message

transmission in the presence of mixed adversary. Manuscript. Available at

www.cs.iitm.ernet.in/∼ashishc/OPRMT.pdf.

[14] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North-

Holland Publishing Company, 1978.

[15] Ravishankar Krishnaswamy and Pandurangan Chandrasekaran. Fault tolerant network

coding. ACM Symposium on Theory of Computing(STOC): Student Research Competi-

tion(SRC), 2007.

35

List of Publications from this Thesis

• [1] Ashwinkumar B.V, Arpita Patra, Ashish Choudhary, Kannan Srinathan and C.

Pandu Rangan. On Tradeoff Between Network Connectivity, Phase Complexity and

Communication Complexity of Reliable Communication Tolerating Mixed Adversary.

To appear at ACM Symposium on Principles of Distributed Computing(PODC) 2008.

