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Abstract—We consider the problem of estimating detailed
3-d structure from a single still image of an unstructured
environment. Our goal is to create 3-d models which are both
quantitatively accurate as well as visually pleasing.

For each small homogeneous patch in the image, we use a
Markov Random Field (MRF) to infer a set of “plane parame-
ters” that capture both the 3-d location and 3-d orientation of the
patch. The MRF, trained via supervised learning, models bdt
image depth cues as well as the relationships between diffart
parts of the image. Other than assuming that the environment
is made up of a number of small planes, our model makes no
explicit assumptions about the structure of the scene; thisnables
the algorithm to capture much more detailed 3-d structure than
does prior art, and also give a much richer experience in the @l
ythroughs created using image-based rendering, even foraenes
with signi cant non-vertical structure.

Using this approach, we have created qualitatively correc8-d
models for 64.9% of 588 images downloaded from the internet.
We have also extended our model to produce large scale 3d

models from a few |mage§. Fig. 1. (a) An original image. (b) Oversegmentation of theg®a to obtain
Index Terms—Machine learning, Monocular vision, Learning  “superpixels”. (c) The 3-d model predicted by the algoritt{d) A screenshot

depth, Vision and Scene Understanding, Scene Analysis: Digp ©f the textured 3-d model.
cues.

|. INTRODUCTION these methods therefore do not apply to the many scenesréhat a

[%?t made up only of vertical surfaces standing on a horizonta
or. Some examples include images of mountains, trees.,(e.g

Fig. 15b and 13d), staircases (e.g., Fig. 15a), arches fgy.1la

Upon seeing an image such as Fig. 1a, a human has no dif cu
understanding its 3-d structure (Fig. 1c,d). However, ritirfig
such 3-d structure remains extremely challenging for aurre )
computer vision systems. Indeed, in a narrow mathemateaes gnd 15K), rooftops (e.g., Fig. 15m), etc. that often have muc
it is impossible to recover 3-d depth from a single imagecsin richer 3-d structure.
we can never know if it is a picture of a painting (in which case In this paper, our goal is to infer 3-d models that are both
the depth is at) or if it is a picture of an actual 3-d enviroant. quantitatively accurate as well as visually pleasing. We us
Yet in practice people perceive depth remarkably well gijest the insight that most 3-d scenes can be segmented into many
one image; we would like our computers to have a similar seng&all, approximately planar surfaces. (Indeed, modernpeten
of depths in a scene. graphics using OpenGL or DirectX models extremely complex

Understanding 3-d structure is a fundamental problem &fenes this way, using triangular facets to model even very
computer vision. For the speci ¢ problem of 3-d reconstimef COmplex shapes.) Our algorithm begins by taking an image, an
most prior work has focused on stereovision [4], structurenf attempting to segment it into many such small planar susface
motion [5], and other methods that require two (or more) isag Using a superpixel segmentation algorithm, [10] we nd aemev
These geometric algorithms rely on triangulation to estamasegmentation of the image that divides it into many smalioresg)
depths. However, algorithms relying only on geometry oféexd  (Superpixels). An example of such a segmentation is shown in
up ignoring the numerous additionaonocularcues that can also Fig. 1b. Because we use an over-segmentation, planar earfac
be used to obtain rich 3-d information. In recent work, [§}-[ in the world may be broken up into many superpixels; however,
exploited some of these cues to obtain some 3-d informatig?@ch superpixel is likely to (at least approximately) licirety
Saxena, Chung and Ng [6] presented an algorithm for predjction only one planar surface.
depths from monocular image features. [7] used monoculpthde For each superpixel, our algorithm then tries to infer the 3-
perception to drive a remote-controlled car autonomoy8ly.[9] d position and orientation of the 3-d surface that it camenfro
built models using a strong assumptions that the scene atensThis 3-d surface is not restricted to just vertical and hamizl
of ground/horizontal planes and vertical walls (and pdgssky); directions, but can be oriented in any direction. Inferri@el

Ashutosh S Min S 4 And v N i tposition from a single image is non-trivial, and humans dgsihg
Sciesncléofjepa?txrrelgst’, Sltr;nfourg ?Jnnivergit;,e WStaﬁforg, a(r; \gllﬁ43 Erggﬁu %any dlf_ferent visual depth Cu_es' such as texture (e'gSSgn?S
f asaxena,aliensun,ap@cs.stanford.edu. a very different texture when viewed close up than when viewe

parts of this work were presented in [1], [2] and [3]. far away); color (e.g., green patches are more likely to Besgon



the ground; blue patches are more likely to be sky). Our élyor faces. Hassner and Basri [17] used an example-based approac
uses supervised learning to learn how different visual dikes to estimate depth of an object from a known object class. Han
these are associated with different depths. Our learniggridhm and Zhu [18] performed 3-d reconstruction for known speci c
uses a Markov random eld model, which is also able to take intclasses of objects placed in untextured areas. Crimingsigl Bnd
account constraints on the relative depths of nearby siygdsp Zisserman [19] provided an interactive method for compuBad

For example, it recognizes that two adjacent image patches geometry, where the user can specify the object segmemt&tio
more likely to be at the same depth, or to be even co-planan, thd coordinates of some points, and reference height of arcobje
being very far apart. Torralba and Oliva [20] studied the relationship betweer th

Having inferred the 3-d position of each superpixel, we canw n Fourier spectrum of an image and its mean depth.
build a 3-d mesh model of a scene (Fig. 1c). We then texture-ma In recent work, Saxena, Chung and Ng (SCN) [6], [21]
the original image onto it to build a textured 3-d model (Fid) presented an algorithm for predicting depth from monocular
that we can y through and view at different angles. image features; this algorithm was also successfully egpior

Other than assuming that the 3-d structure is made up ofiaproving the performance of stereovision [22]. Michelax&na
number of small planes, we make no explicit assumptions tabeind Ng [7] also used monocular depth perception and reieforc
the structure of the scene. This allows our approach to géimer ment learning to drive a remote-controlled car autonomousl
well, even to scenes with signi cantly richer structure thanly in unstructured environments. Delage, Lee and Ng (DLN) [8],
vertical surfaces standing on a horizontal ground, such@shm [23] and Hoiem, Efros and Hebert (HEH) [9] assumed that the
tains, trees, etc. Our algorithm was able to automaticalfigri3-d environment is made of a at ground with vertical walls. DLN
models that were both qualitatively correct and visuallggsing considered indoor images, while HEH considered outdoonese
for 64:9% of 588 test images downloaded from the internefThey classi ed the image into horizontal/ground and veitic
We further show that our algorithm predicts quantitativetpre regions (also possibly sky) to produce a simple “pop-up’etyp
accurate depths than both previous work. y-through from an image.

Extending these ideas, we also consider the problem ofiageat  Our approach uses a Markov Random Field (MRF) to model
3-d models of large novel environments, given only a smaklhonocular cues and the relations between various partseof th
sparse, set of images. In this setting, some parts of theescémage. MRFs are a workhorse of machine learning, and have
may be visible in multiple images, so that triangulation Suepeen applied to various problems in which local featuresewer
(structure from motion) can be used to help reconstruct themsuf cient and more contextual information had to be used.
but larger parts of the scene may be visible only in one imagexamples include stereovision [4], [22], image segmeaitafti.0],

We extend our model to seamlessly combine triangulatiors cugnd object classi cation [24].

and monocular image cues. This allows us to build full, photo There is also ample prior work in 3-d reconstruction from
realistic 3-d models of larger scenes. Finally, we also destrate multiple images, as in stereovision and structure from amoti
how we can incorporate object recognition information iot@ |t is impossible for us to do this literature justice heret ecent

model. For example, if we detect a standing person, we kn@Mrveys include [4] and [25], and we discuss this work furiine
that people usually stand on the oor and thus their feet musiection VIII.

be at ground-level. Knowing approximately how tall peopte a
also helps us to infer their depth (distance) from the canfera
example, a person who is 50 pixels tall in the image is likely 1. VISUAL CUES FORSCENE UNDERSTANDING

about twice as far as one who is 100 pixels tall. (This is also Images are formed by a projection of the 3-d scene onto two

reminiscent of [11], who used a car and pedestrian detecior gyimensions. Thus, given only a single image, the true 3utsire
the known size of cars/pedestrians to estimate the posifithe ;g ambiguous, in that an image might represent an in nite hem

horizon.) of 3-d structures. However, not all of these possible 3-dcstires

The rest of this paper is organized as follows. Section Uye equally likely. The environment we live in is reasonably

discusses the prior work. Section Il describes the irdosi we gy ctyred, and thus humans are usually able to infer a ljear
draw from human vision. Section IV describes the represemta ., rect 3.9 structure, using prior experience.

We((j:hloose gorsthe _3'd mo((j:iel. Sgctlor;]vgescrlbes ou(rjprglsaf)ll Given a single image, humans use a variety of monocular
models, and Section VI describes the features used. Seetlon .,oq 5 infer the 3-d structure of the scene. Some of these

desc.rlbes the experiments we performed to test our mod Ves are based on local properties of the image, such asdextu
Section VIII extends our model to the case of building Iarggariations and gradients, color, haze, and defocus [6], [26].

.3'd moc_lels from Sparse Vviews. Section D_( demonstrat_es h%r example, the texture of surfaces appears different when
information from object rec_ognlzers can _be incorporated our viewed at different distances or orientations. A tiled owith
models for 3-d reconstruction, and Section X concludes. parallel lines will also appear to have tilted lines in an iea

such that distant regions will have larger variations in time
Il. PRIOR WORK orientations, and nearby regions will have smaller vaoisi in
For a few specic settings, several authors have developdide orientations. Similarly, a grass eld when viewed affelient
methods for depth estimation from a single image. Exampies iorientations/distances will appear different. We will tap some
clude shape-from-shading [12], [13] and shape-from-texf@i4], of these cues in our model. However, we note that local image
[15]; however, these methods are dif cult to apply to sugac cues alone are usually insuf cient to infer the 3-d struetulFor
that do not have fairly uniform color and texture. Nagai ef&] example, both blue sky and a blue object would give similaalo
used Hidden Markov Models to performing surface reconsionc features; hence it is dif cult to estimate depths from lofsdtures
from single images for known, xed objects such as hands aradone.



Fig. 2. (Left) An image of a scene. (Right) OversegmentedgienéEach
small segment (superpixel) lies on a plane in the 3d woldst viewed in
color)

Fig. 4. (Left) Original image. (Right) Superpixels ovedaiith an illustration
The ability of humans to “integrate information” over spaceof the Markov Random Field (MRF). The MRF models the relati¢shown
i.e. understand the relation between different parts ofintege, 2%;9‘25 sggvflf‘))bet""ee” neighboring superpixels. (Only aesudfsnodes and
is crucial to understanding the scene's 3-d structure. {2igp. '
11] For example, even if part of an image is a homogeneous,

featureless, gray patch, one is often able to infer its dénth  \jore formally, we parametrize both the 3-d location and

looking at nearby portions of the image, so as to recogniggientation of the in nite plane on which a superpixel lieg b
whether this patch is part of a sidewalk, a wall, etc. Therftn using a set of plane parameters2 R®. (Fig. 3) (Any point
our model we will also capture relations between differeattg q2 R lying on the plane with parameterssatises 'q=1.)

of the image. The valuelsj j is the distance from the camera center to the

Humans recognize many visual cues, such that a particuidgsest point on the plane, and the normal vector — gives
shape may be a building, that the sky is blue, that grass &greihe orientation of the plane. R; is the unit vector (also called

that trees grow above the ground and have leaves on top of theg rayR;) from the camera center to a pointying on a plane
and so on. In our model, both the relation of monocular cuggip, parameters , thend; = 1=R! is the distance of point
’ 1

to the 3-d structure, as well as relations between variots 8  om the camera center.
the image, will be learned using supervised learning. Spety,
our model will be trained to estimate depths using a trairsag

in which the ground-truth depths were collected using arlase
scanner. It is dif cult to infer 3-d information of a region from locatues

alone (see Section Ill), and one needs to infer the 3-d irdition
of a region in relation to the 3-d information of other region
In our MRF model, we try to capture the following properties

V. PROBABILISTIC MODEL

1/|a-\ R; of the images:
Image Features and depth The image features of a super-
. Pplane with ixel bear some relation to the depth (and orientation) ef th
Camera d " parameter (¥ P ixel pth ( )
center / i superpixel.
Connected structure Except in case of occlusion, neigh-
boring superpixels are more likely to be connected to each
Fig. 3. A 2-d illustration to explain the plane parameteand raysR from Otherg perp y

the camera. . . )
Co-planar structure: Neighboring superpixels are more

likely to belong to the same plane, if they have similar
features and if there are no edges between them.

Co-linearity: Long straight lines in the image plane are more
likely to be straight lines in the 3-d model. For example,

IV. REPRESENTATION

Our goal is to create a full photo-realistic 3-d model from
an image. Following most work on 3-d models in computer edges of buildings, sidewalk, windows
graphics and other related elds, we will use a polygonal imes ) ' ' o
representation of the 3-d model, in which we assume the world"\Cte that no single one of these four properties is enough, by
is made of a set of small planddn detail, given an image of itself, to predict the 3-d structure. For example, in somsesa

the scene, we rst nd small homogeneous regions in the ipagP¢@l image features are not strong indicators of the defd (
called “Superpixels” [10]. Each such region representslerent orientation) (e.g., a patch on a blank feature-less wahusT our

region in the scene with all the pixels having similar prajesr.  2PProach will combine these properties in an MRF, in a way tha
(See Fig. 2.) Our basic unit of representation will be thegals dePends on our “con dence” in each of these properties. Here

planes in the world, and our goal is to infer the location an@_ﬁ con ;jence is itself es.tlmgte(i from local image cuesda
orientation of each one. will vary from region to region in the image. .
Our MRF is composed of ve types of nodes. The input
2This assumption is reasonably accurate for most arti ctalictures, such to the MRFE occurs through two variables, labeledand

as buildings. Some natural structures such as trees coultpe be better These variables correspond to features computed from tageém
represented by a cylinder. However, since our models arte gigtailed, e.g.,

about 2000 planes for a small scene, the planar assumptidts\gaite well  PiXels (see SefCtion \_/l_ for details.) and are always Ob_serVed
in practice. thus the MRF is conditioned on these variables. The vamable



(a) (b)

Fig. 6. lllustration explaining effect of the choice gf ands; on enforcing

Fig. 5. (Left) An image of a scene. (Right) Inferred “soft’lvas ofy; 2 .
[0;1]. (yj =0 indicates an occlusion boundary/fold, and is shown in bjack(®) Connected structure and (b) Co-planarity.
Note that even with the inferreglj being not completely accurate, the plane

parameter MRF will be able to infer “correct” 3-d models.

planarity, connectedness and co-linearity, we formulateMRF

L . . . as
indicate our degree of con dence in a depth estimate obthine v

only from local image features. The variablgsindicate the . 1 .

: . . P( jX;;v;R; )= = f iXit iiRi;
presence or absence of occlusion boundaries and folds in the C Xy ) zZ 1 iXis iR )
image. These variables are used to selectively enforcenapty Y £ ive ‘Ri-R: 1
and connectivity between superpixels. Finally, the vdeab are 20 i3 1Y s RiR)) @
the plane parameters that are inferred using the MRF, whieh w &
call “Plane Parameter MRE." where, ; is the plane parameter of the superpikeFor a total of

Occlusion Boundaries and Folds We use the variableg; 2 Sj points in the superpixel we usex;s; to denote the features for
f0;1g to indicate whether an “edgel” (the edge between twpoints; in the superpixel. X; = fxis, 2 R%* :s; = 1;::;Sig
neighboring superpixels) is an occlusion boundary/foldnot. are the features for the superpixel (Section VI-A) Similarly,
The inference of these boundaries is typically not completeR; = fRjs, : s = 1;::;Sig is the set of rays for superpixél*
accurate; therefore we will infesoft values fory;; . (See Fig. 5.) s the “con dence” in how good the (local) image features are

More formally, for an edgel between two superpixél@ndj, in predicting depth (more details later).
yj = 0 indicates an occlusion boundary/fold, agg = 1 The rst term f1( ) models the plane parameters as a function
indicates none (i.e., a planar surface). of the image features;s,. We haveR{si i = 1=ds, (where

In many cases, strong image gradients do not correspondRg,, is the ray that connects the camera to the 3-d location of
the occlusion boundary/fold, e.g., a shadow of a buildirfinga  point s;), and if the estimated dept&;si = xﬁsi r, then the
on a ground surface may create an edge between the part withagtional error would be
shadow and the one without. An edge detector that reliesojust N
these local image gradients would mistakenly produce am.edg  disi  dis; _ i(d‘-. ) 1=Rl i(xis. 1) 1
However, there are other visual cues beyond local image e dis, dis, b bor TS T

that better indicate whether two planes are connectedinaplor o )
not. Using learning to combine a number of such visual femtyr 1 NErefore, to minimize the aggregate fractional error caéthe

makes the inference more accurate. In [28], Martin, Fowlkd®ints in the superpixel, we model the relation between taaep
and Malik used local brightness, color and texture for leggn Parameters and the image features as
segmentation boundaries. Here, our goal is to learn o@siusi 0 _ 1
boundaries and folds. In detail, we modgl using a logistic f Y Dy - ' T T

iiXi: i;Ri; )=exp @ rs. Rie i(Xis. 1A
response a®(yj = 1jj; ) =1=L+exp( ' j)). where, 1CalXis iiRii ) P - w1 Risy (s, 1)
j are features of the superpixélsandj (Section VI-B), and ' 2)

are the parameters of the model. During inference, we Wl ushe parameters of this model are 2 R%%*. We use different

a mean eld-like approximation, where we replagg with its parameters ¢) for rows r = 1;::;11 in the image, because

mean value under the logistic model. the images we consider are roughly aligned upwards (i.e, th
direction of gravity is roughly downwards in the image), and

Now, we will describe how we model the distribution of themda thus it allows our algorithm to learn some regularities ire th

parameters , conditioned ory. images—that different rows of the image have differentistiatl

Fractional depth error : For 3-d reconstruction, the fractional (orProperties. E.g., a blue superpixel might be more likely & b
relative) error in depths is most meaningful; it is used imusture Sky if it is in the upper part of image, or water if it is in the
for motion, stereo reconstruction, etc. [4], [29] For grdenuth lower part of the image, or that in the images of environments
depthd, and estimated deptﬁ‘l fractional error is de ned asa available on the internet, the horizon is more ||ke|y to behe

d)=d= d=d 1. Therefore, we will be penalizing fractional errorsmiddle one-third of the image. (In our experiments, we otzéli
in our MRF. very similar results using a number of rows ranging from 5 to

MRF Model: To capture the relation between the plane parar’rEi’-S') Here, | = f is; = si = 1;:5Sig indicates the con dence

eters and the image features, and other properties such-as co

4The rays are obtained by making a reasonable guess on thescannmsic
3For comparison, we also present an MRF that only models tthéoBation ~parameters—that the image center is the origin and the -pigéct-ratio is
of the points in the image (“Point-wise MRF,” see Appendix). one—unless known otherwise from the image headers.
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Fig. 7._ A 2-d illustra'tion to explain the co-p_Ianarity tel_’m_h_e distance of Fig. 8. Co-linearity. (a) Two superpixelsandj lying on a straight line
the points;j on superpixej to the plane on which superpixelies along the ,he 2.4 image, (b) An illustration showing that a long &fra line in the

ray Rjs ; » is given bydy  da. image plane is more likely to be a straight line in 3-d.

of the features in predicting the depths, at points;.® If the

local image features were not strong enough to predict de%?ﬁ:vuer\\//eers ;h;tr;\iloﬁld”E;O:r?ctthteoiiztrglggr:glfsIrrht)hri IIT(ZIQ m';)
for point s;, then s, = 0 turns off the effect of the term ’ 9 gep y

BT (T . i straight one in 3-d as well (Fig. 8b). In our model, therefore
;S I(XI;Si f) .

) will penalize the relative (fractional) distance of a po{atich as
The second ternfi;( ) models the relation between the plan%j) from the ideal straight line.

parameters of two superpixeisand;. It uses pairs of points; In detail, consider two superpixelsandj that lie on planes

ands; to do so: parameterized by; and ; respectively in 3-d, and that lie on a
fo()= Qfsi & g2N hs:s; () (3) ;traight _Iine in the 2_-d imag(_a. For a_poislt lying on superpixel
j» we will penalize its (fractional) distance along the Ry

We will capture co-planarity, connectedness and co-ligaly  from the 3-d straight line passing through superpixele.,
different choices oh() andfs;;s;g.

Connected structure We enforce this constraint by choosing hs; ( i; j;VijiRjs;)=€xp Vj j(RjT;Si i RJ»T;Si j)d] (6)
si ands; to be on the boundary of the superpixélandj. As
shown in Fig. 6a, penalizing the distance between two suehtgo with hs;;s; () = hs ()hs; (). In detail, RjT;s. j =1=ds, and
ensures that they remain fully connected. The relative(fvaal) RjT-si | = 1:d]QSj; therefore, the tem(R.l_ij i Rst,» ,-)él\
distance between pointg ands; is penalized by gives the fractional distancédjs dj(;)sj )= djs, dqu,- for § =

. vy D _ T T 9 —— '
hsisi (i jivisRiGR) =exp v i(Ris, i Ryjs; j)d dis, &% . The “condence”y; depends on the length of the

(4) line and its curvature—a long straight line in 2-d is moreelik

In detail, Rls, i = 1=dis, and RJ-T;SJ. j = 1=ds, ; therefore, to be a straight line in 3-d.

the term (Rfs, i R{s, ;)@ dives the fractional distance Parameter Learning and MAP Inference: Exact parameter

i(dis,  dis )=p s, Gjs j for d=  ds ds, . Note that in case learning of the model is intractable; therefore, we use Mult
Il 1 N 2 1 )" .l . . .

of occlusionl, the variabIeJﬁJ- =0, and hence the two superpixelscond't'ona| Learning (MCL) for approximate learning, whehe

will not be forced to be connected. graphical model is approximated by a product of several matg

Co-planarity: We enforce the co-planar structure by choosing %ondltlonal likelihoods [30], [31]. In particular, we estate the

third pair of pointss’®and s?°in the center of each superpixel " parameters ef ciently by solving a Linear Program (LP). éSe
. ! ) . Appendix for more details.)

along with ones on the boundary. (Fig. 6b) To enforce co- MAP inf f the pl tersi imizing th

planarity, we penalize the relative (fractional) distarafepoint inference of the plane parametersi.€., maximizing the

00 . - L conditional likelihoodP ( jX; ;y;R ; ), is ef ciently performed
~from the plane in which superpixéllies, along the rayw;. . . .
?JSee Fig 7)p n wh Hperpixelt g Ris e by solving a LP. We implemented an ef cient method that uses

the sparsity in our problem, so that inference can be peddrin

hoo( i; j,Yij;Rjso) =exp  yj j(RjT;S 00 RjT;S 00 j ) dgo0j about 4-5 seconds for an image having about 2000 supermirels
: : : : : (5) asingle-core Intel 3.40GHz CPU with 2 GB RAM. (See Appendix

with hgpogeo( ) = hgoo( Jhsoo ). Note that if the two superpixels for more details.)

are coplanar, thethsioo;sjoo = 1. To enforce co-planarity between

two distant planes that are not connected, we can choose thre

such points and use the above penalty.

Co-linearity: Consider two superpixels andj lying on a long For each superpixel, we compute a battery of features taigapt

straight line in a 2-d image (Fig. 8a). There are an in niteher some of the monocular cues discussed in Section Ill. We also
s ) ) o ) compute features to predict meaningful boundaries in theges,

_ “The variable s; is an indicator of how good the image features argy,ch a5 occlusion and folds. We rely on a large number of

in predicting depth for points; in superpixeli. We learn s, from the . .

monocular image features, by estimating the expected wlidg x| j=dj different type§ of featl'!res to mak? our algorithm more ':‘Dbus

as Tx; with logistic response, with ; as the parameters of the model,and to make it generalize even to images that are very differe

featuresx; andd; as ground-truth depths. from the training set.

VI. FEATURES



Fig. 9. The convolutional Iters used for texture energieglayradients. The rst 9 are 3x3 Laws' masks. The last 6 aredtiented edge detectors a8°.
The rst nine Law's masks do local averaging, edge detectiad spot detection. The 15 Laws' mask are applied to the in@agjge Y channel of the image.
We apply only the rst averaging lter to the color channeldo@nd Cr; thus obtain 17 Iter responses, for each of which wiewate energy and kurtosis
to obtain 34 features of each patch.
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Fig. 10. The feature vector. (a) The original image, (b) Sppels for the image, (c) An illustration showing the loicat of the neighbors of superpixel S3C
at multiple scales, (d) Actual neighboring superpixels 8€Sat the nest scale, (e) Features from each neighboringrpixel along with the superpixel-shape
features give a total of 524 features for the superpixel SB@st viewed in coloy.

A. Monocular Image Features segmentations based on these properties. Each elementr of ou

For each superpixel at location we compute both texture- 14 dimensional feature vectoy is then an indicator if two
based summary statistic features and superpixel shapeoaad | SUPErpixelsi andj lie in the same segmentation. For example,
tion based features. Similar to SCN, we use the output of tts| [f two superpixels belong to the same segments in all the 14
(9 Laws masks, 2 color channels in YCbCr space and 6 orientg@@mentations then it is more likely that they are coplarmar o
edges, see Fig. 10). These are commonly used lters thaumaptconnected. Relying on multiple segmentation hypothesstead
the texture of a 3x3 patch and the edges at various orientatio®’ ©né makes the detection of boundaries more robust. The
The Iter§ outputsFn (x;y), n = 1:::: 17 are incorporated into features_ j are the input to the classier for the occlusion
Ei(N)= (xy)2s il (GY) Fa(xy)i¥, where k = 2,4 gives the Poundaries and folds.
energy and kurtosis respectively. This gives a total of dies
for each superpixel. We compute features for each supérfoxe
improve performance over SCN, who computed them only for VI
xed rectangular patches. Our superpixel shape and logdtased
features (14, computed only for the superpixel) includexighape A. Data collection
and Ioc_aFion based featu_res in Secti_on 2.2 of [9], and algo th \\e used a custom-built 3-D scanner to collect images (e.g.,
eccentricity of the superpixel. (See Fig. 10.) _ Fig. 11a) and their corresponding depthmaps using lasegs, (e
~ We attempt to capture more “contextual” information by alsgjq 11p). We collected a total of 534 images+depthmapsh wit
including features from neighboring superpixels (we pitle t 5n'image resolution of 2272x1704 and a depthmap resolufion o

largest four in our experiments), and at multiple spati@les 55305 and used 400 for training our model. These images wer
(three in our experiments). (See Fig. 10.) The featuresetae, c|jected during daytime in a diverse set of urban and nhtura

contain information from a larger portion of the image, ahds 5165 in the city of Palo Alto and its surrounding regions.

are more expressive than jyst local features. This makes tthe tested our model on rest of the 134 images (collected
feature vectorx; of a superpixel34 (4 +1) 3+14 =524 qiny our 3-d scanner), and also on 588 internet images. The
dimensional. internet images were collected by issuing keywords on Goog|
image search. To collect data and to perform the evaluation
of the algorithms in a completely unbiased manner, a person
Another strong cue for 3-d structure perception is boundarnpot associated with the project was asked to collect images of
information. If two neighboring superpixels of an imagepiésy environments (greater than 800x600 size). The person ciase
different features, humans would often perceive them todmsp following keywords to collect the images: campus, gardeakp
of different objects; therefore an edge between two sugelpi house, building, college, university, church, castle,rcosquare,
with distinctly different features, is a candidate for a loston lake, temple, scene. The images thus collected were frooepla
boundary or a fold. To compute the featurgs between su- from all over the world, and contained environments thatewer
perpixelsi andj, we rst generate 14 different segmentationssigni cantly different from the training set, e.g. hillsakes, night
for each image for 2 different scales for 7 different projet scenes, etc. The person chose only those images which were
based on textures, color, and edges. We modi ed [10] to ereatf “environments,” i.e. she removed images of the geomsdtric

. EXPERIMENTS

B. Features for Boundaries
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Fig. 11. (a) Original Image, (b) Ground truth depthmap, (€pkh from image features only, (d) Point-wise MRF, (e) Plapeameter MRF.Rest viewed
in color)

|

cial lj

Imagé Ground-truth  Predicted Image " Ground-truth  Predicted

Fig. 12. Typical depthmaps predicted by our algorithm ordkmit test set, collected using the laser-scanrges{ viewed in coloy.

Fig. 13. Typical results from our algorithm. (Top row) Omal images, (Bottom row) depthmaps (shown in log scalepyels closest, followed by red
and then blue) generated from the images using our planengtea MRF. Best viewed in color.

gure “square' when searching for keyword “square’; no othe In Table I, we compare the following algorithms:

pre- ltering was done on the data. (a) Baseline: Both for pointwise MRF (Baseline-1) and plgae
In addition, we manually labelegb images with “ground-truth’ rameter MRF (Baseline-2). The Baseline MRF is trained witho

boundaries to learn the parameters for occlusion bourslamel any image features, and thus re ects a “prior” depthmap ofsso

folds. (b) Our Point-wise MRF: with and without constraints (coone
tivity, co-planar and co-linearity).
B. Results and Discussion (c) Our Plane Parameter MRF (PP-MRF): without any consgtrain

We performed an extensive evaluation of our algorithm on 58ith co-planar constraint only, and the full model.
internet test images, and 134 test images collected usintagier (d) Saxena et al. (SCN), [6], [21] applicable for quantitaterrors

scanner. only.



Fig. 14. Typical results from HEH and our algorithiRow 1. Original Image.Row 2 3-d model generated by HEHRow 3 and 4 3-d model generated by
our algorithm. (Note that the screenshots cannot be simipigimed from the original image by an af ne transformatjoim image 1, HEH makes mistakes in
some parts of the foreground rock, while our algorithm peedthe correct model; with the rock occluding the houseingiwa novel view. Inimage 2 HEH
algorithm detects a wrong ground-vertical boundary; wioile algorithm not only nds the correct ground, but also caps a lot of non-vertical structure,
such as the blue slide. image 3 HEH is confused by the re ection; while our algorithm prags a correct 3-d model. image 4 HEH and our algorithm
produce roughly equivalent results—HEH is a bit more visupleasing and our model is a bit more detailed.inmage 5 both HEH and our algorithm
fail; HEH just predict one vertical plane at a incorrect ltea. Our algorithm predicts correct depths of the pole amel iorse, but is unable to detect their
boundary; hence making it qualitatively incorrect.

TABLE |

_ identi ed,® (c) Depth errorjlogd logdj on a log-10 scale,
RESULTS: QUANTlTATlVE COMPARISON OF VARIOUS METHODS

averaged over all pixels in the hold-out test set, (d) Averag

METHOD CORRECT % PLANES | log;,  REL relative depth erro&dﬁ. (We give these two numerical errors on
(%) CORRECT only the 134 test images that we collected, because grautiu-t

SCN NA NA 0.198 0.530 . - .

HEH 33.1% 50.3% 0.320 1.423 laser depths are not available for internet images.)

BASELINE-1 0% NA 0.300 0.698 Table | shows that both of our models (Point-wise MRF

NO PRIORS 0% NA 0.170 0.447 and Plane Parameter MRF) outperform the other algorithms

POINT-WISE MRF 23% NA 0.149 0.458 in quantitative accuracy in depth prediction. Plane Patame

ﬁgsgé—:gi'sz 8:’;’ 8?;’ 8233 8332 MRF gives better relative depth accuracy and produces sharp

0 0 . . H
CO-PLANAR 45 7% 57 1% 0191 0373 depthmaps (I_:lg. 11, 12 a_nd 13). Table | also shows t_hat by
PP-MRE 64.9% 71.2% 0187 0.370 capturing the image properties of connected structurglaparity

and co-linearity, the models produced by the algorithm bezo
signi cantly better. In addition to reducing quantitatieerors, PP-
MRF does indeed produce signi cantly better 3-d models. Whe
producing 3-d ythroughs, even a small number of erroneous

(e) Hoiem et al. (HEH) [9]. For faimess, we scale and shiiith planes make the 3-d model visually unacceptable, even thoug

depthmaps before computing the errors to match the glolzéé sc
of our test images. Without the scaling and shifting, theioeis the major planes in the image (major planes oceupy more 153 df the

much higher (7.533 for relative depth error). area), the plane is in correct relationship with its nearesghbors (i.e., the
. . . Orelative orientation of the planes is within 30 degrees)teNbat changing the
We compare the algorithms on the following metrics: (a) %umbers, such as 70% to 50% or 90%, 15% to 10% or 30%, and 3@etegr

of models qualitatively correct, (b) % of major planes cothg to 20 or 45 degrees, gave similar trends in the results.

SFor the rst two metrics, we de ne a model as correct when f@94 of



TABLE Il
PERCENTAGE OF IMAGES FOR WHICHHEH IS BETTER, OUR PP-MRFIs http'//make3d stanford.edu

BETTER, ORIT IS ATIE.
Our algorithm, trained on images taken in daylight around

ALGORITHM | %BETTER the city of Palo Alto, was able to predict qualitatively caxt

TIE 15.8% 3-d models for a large variety of environments—for example,

HEH 22-1;% ones that have hills or lakes, ones taken at night, and even
PP-MRF 62.1% paintings. (See Fig. 15 and the website.) We believe, based o

our experiments with varying the number of training exaraple
(not reported here), that having a larger and more diversefse

the quantitative numbers may still show small errors. LT : . -
training images would improve the algorithm signi cantly.

Our algorithm gives qualitatively correct models fé4:9% of
images as compared 83:1% by HEH. The qualitative evaluation
was performed by a person not associated with the project
following the guidelines in Footnote 6. Delage, Lee and N [8  v/|||. L ARGER3-D MODELS FROM MULTIPLE IMAGES
and HEH generate a popup effect by folding the images at
“ground-vertical” boundaries—an assumption which is noet A 3.4 model built from a single image will almost invariably
for a signi cant number of images; therefore, their methadsfin  pe an incomplete model of the scene, because many portions of
those images. Some typical examples of the 3-d models avenshqne scene will be missing or occluded. In this section, we wil

in Fig. 14. (Note that all theestcases shown in Fig. 1, 13, 14se hoth the monocular cues and multi-view triangulatioescio
and 15 are from the dataset downloaded from the interne&peXccreate better and larger 3-d models.

Fig. 15a which is from the laser-test dataset.) These @@8npl gy en 4 sparse set of images of a scene, it is sometimes f@ssib
also show that our models are often more detailed, in thatahe 1 ~onstryct a 3-d model using techniques such as struatome f

often able to model the scene with a multitude (over a hundreg, ;:ion (SFM) [5], [32], which start by taking two or more

of planes. . photographs, then nd correspondences between the imagels,
~We performed a further comparison. Even when both algQsa)y use triangulation to obtain 3-d locations of the ptsinlf
rithms are eva_lluated as qualltatlvely correct on an image Oy,e images are taken from nearby cameras (i.e., if the b@seli
result could still be superior. Therefore, we asked the @em® yisiance is small), then these methods often suffer fromgelar
compare the two methods, and decide which one is better, OhdSingulation errors for points far-away from the cam@r,
a tie’ Table Il shows that our algorithm outputs the better mOd%bnverser, one chooses images taken far apart, then diten t
in 62:1% of the cases, while HEH outputs better model in 22'1%11ange of viewpoint causes the images to become very differe
cases (tied in the rest). so that nding correspondences becomes dif cult, sometime
Full QOcumentation describing_ the details of the unbiasqgading to spurious or missed correspondences. (Worsdathe
human judgment process, along with the 3-d ythroughs peedli paseline also means that there may be little overlap between
by our algorithm, is available online at: the images, so that few correspondences may even existseThe
http://make3d.stanford.edu/research dif culties make purely geometric 3-d reconstruction aiiloms
Some of our models, e.g. in Fig. 15j, have cosmetic defectstail in many cases, speci cally when given only a small set of
e.g. stretched texture; better texture rendering tectasiquould images.
make the models more visually pleasing. In some cases, & smaHowever, when tens of thousands of pictures are available—
mistake (e.g., one person being detected as far-away inlbly. for example, for frequently-photographed tourist atti@ts such
and the banner being bent in Fig. 15k) makes the model look ba@ national monuments—one can use the information present
and hence be evaluated as “incorrect.” in many views to reliably discard images that have only few
Finally, in a large-scale web experiment, we allowed users torrespondence matches. Doing so, one can use only a small
upload their photos on the internet, and view a 3-d ythrougkubset of the images available X5%), and still obtain a “3-
produced from their image by our algorithm. About 2384@& point cloud” for points that were matched using SFM. This
unique users uploaded (and rated) about 26228 infagésers approach has been very successfully applied to famousitbgsid
rated 48.1% of the models as good. If we consider the imagasch as the Notre Dame; the computational cost of this dkgori
of scenes only, i.e., exclude images such as company logagss signi cant, and required about a week on a cluster of
cartoon characters, closeups of objects, etc., then thepge computers [33].
was 57.3%. We have made the following website available for The reason that many geometric “triangulation-based” odth
downloading datasets/code, and for converting an image3tala sometimes fail (especially when only a few images of a scege a
model/ ythrough: available) is that they do not make use of the informatiorsg@né
in a single image. Therefore, we will extend our MRF model
"To compare the algorithms, the person was asked to countuimder of g seamlessly combine triangulation cues and monoculagéma

errors made by each algorithm. We de ne an error when a majnepin . . .
the image (occupying more than 15% area in the image) is imgvfocation cues to build a full photo-realistic 3-d model of the scensing

with respect to its neighbors, or if the orientation of thar® is more than 30 monocular cues will also help us build 3-d model of the parts

degrees wrong. For example, if HEH fold the image at incargace (see that are visible only in one view.

Fig. 14, image 2), then it is counted as an error. Similaflyyé predict top

of a building as far and the bottom part of building near, mgkihe building

tilted—it would count as an error. 9l.e., the depth estimates will tend to be inaccurate for abjeat large
8No restrictions were placed on the type of images that usamsupload. distances, because even small errors in triangulationreslllt in large errors

Users can rate the models as good (thumbs-up) or bad (thdovas). in depth.
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Fig. 15. Typical results from our algorithm. Original ima@ep), and a screenshot of the 3-d ythrough generated frbmimage (bottom of the image).
The 11 images (a-g,I-t) were evaluated as “correct” and tifle-K) were evaluated as “incorrect.”
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Fig. 16. An illustration of the Markov Random Field (MRF) farferring

3-d structure. (Only a subset of edges and scales shown.) Fig. 17. An image showing a few matches (left), and the regui8-d

model (right) without estimating the variablgs for con dence in the 3-d
matching. The noisy 3-d matches reduce the quality of theeidhlote the
A. Representation cones erroneously projecting out from the wall.)

Given two small plane (superpixel) segmentations of two
images, there is no guarantee that the two segmentations
“consistent,” in the sense of the small planes (on a spediject)
in one image having a one-to-one correspondence to theglane
the second image of the same object. Thus, at rst blush ieapp
non-trivial to build a 3-d model using these segmentaticnge ] -
it is impossible to associate the planes in one image to those f3( jdriyT:R;Q)/ exp yri driRi’ i 1 1 (8)
another. We address this problem by using our MRF to reason i=1
simultaneously about the position and orientation of eygane This term places a “soft” constraint on a point in the plane to
in every image. If two planes lie on the same object, then thave its depth equal to its triangulated depth.

MRF_ will (hopefully) infe_r that they have exactly the samel3- \yap Inference: For MAP inference of the plane param-
position. More formally, in our model, the plane parametefs gters, we need to maximize the conditional log-likelihood
of each smali" plane in then™ image are represented by ogP( jX;Y:d7: ). All the terms in Eq. 7 are.; norm of a

node in our Markov Random Field (MRF). Because our modghear function of ; therefore MAP inference is ef ciently solved
usesL ; penalty terms, our algorithm will be able to infer modelsuSing a Linear Program (LP).

for which ' = ", which results in the two planes exactly
overlapping each other.

R (fractional) error in the triangulated deptbs; and dj =
1=(R{ ;). ForK" points for which the triangulated depths are
available, we therefore have

n

C. Triangulation Matches

B. Probabilistic Model In this section, we will describe how we obtained the corre-

) spondences across images, the triangulated depthand the

In addition to the image features/depth, co-planarity,nemted “con dences”yr in thefs() term in Section VIII-B.
structure, and co-linearity properties, we will also calesi the We start by computing 128 SURF features [34], and then
depths obtained from triangulation (SFM)—the depth of th®p caculate matches based on the Euclidean distances between
is more likely to be close to the triangulated depth. Simiitathe the features found. Then to compute the camera pases
probabilistic model for 3-d model from a single image, moft QRotation; Translation] 2 R® # and the depthsir of the
these cues are noisy indicators of depth; therefore our MBéain points matched, we use bundle adjustment [35] followed liygus
will also reason about our “con dence” in each of them, usingnhonocular approximate depths to remove the scale ambiguity
latent variabley/r (Section VIII-C). However, many of these 3-d correspondences are noisy; for

Let Q" = [Rotation ; Translation] 2 R® * (technically example, local structures are often repeated across areifeag,
SE(3)) be the camera pose when imageas taken (w.r.t. a xed Fig. 17, 19 and 213° Therefore, we also model the “con dence”
reference, such as the camera pose of the rstimage), anttlety_. in thei™ match by using logistic regression to estimate the
be the depths obtained by triangulation (see Section VIIMEe  propability P (yr; = 1) of the match being correct. For this, we

formulate our MRF as v use neighboring 3-d matches as a cue. For example, a group of
P(jX:Y:idr: )/ fo( "X MRTQM: M) spatially consistent 3-d matches is more likely to be cdrtean
4 Nen. @, ~n 10ncreasingly many cameras and camera-phones come equigieGPS,
f2( "jy ;R;QY) and sometimes also accelerometers (which measure gaatyfation). Many
photo-sharing sites also offer geo-tagging (where a user sgecify the
fa( njd? : y$ ; R" ; Qn) (7) longitude and latitude at which an image was taken). Thegefoe could also

use such geo-tags (together with a rough user-speci ednagti of camera
) ) _ _ orientation), together with monocular cues, to improve geeformance of
where, the superscript is an index over the images, For ancorrespondence algorithms. In detail, we compute the ajpaie depths of

imagen, In is the plane parameter of superpixein imagen. the points using monocular image featuresdas xT ; this requires only

s ti ill d th iot for brevit dtevri computing a dot product and hence is fast. Now, for each pni@ain image
ometmes, we will drop thé Superscript Tor brevity, andtr g ¢ \yhich we are trying to nd a correspondence in image Apitally we

in place of " when it is clear that we are referring to a particulatould search in a band around the corresponding epipolarifiimage A.
image. However, given an approximate depth estimated from from enolar cues,
we can limit the search to a rectangular window that comprisdy a subset

The rst term fl_( ) and the second te_rmZ( ) capture the of this band. (See Fig. 18.) This would reduce the time reglfor matching,
monocular properties, and are same as in Eq. 1. Wefg6¢ anq also improve the accuracy signi cantly when there apeated structures

to model the errors in the triangulated depths, and penalizethe scene. (See [2] for more details.)

n
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a single isolated 3-d match. We capture this by using a featur
vector that counts the number of matches found in the present
superpixel and in larger surrounding regions (i.e., at iplgt
spatial scales), as well as measures the relative qualttyeles

the best and second best match.

Fig. 18. Approximate monocular depth estimates help totliftné search
area for nding correspondences. For a point (shown as a mjlid image
B, the corresponding region to search in image A is now a ngd¢a(shown
in red) instead of a band around its epipolar line (shown irepin image A.

D. Phantom Planes

This cue enforces occlusion constraints across multipte-ca
eras. Concretely, each small plane (superpixel) comes from
image taken by a speci ¢ camera. Therefore, there must be an
unoccluded view between the camera and the 3-d positionaf th
small plane—i.e., the small plane must be visible from theea
location where its picture was taken, and it is not plausible
any other small plane (one from a different image) to haveda 3-
position that occludes this view. This cue is important bsea
often the connected structure terms, which informally trytte”
points in two small planes together, will result in modelattare Fig. 23. (Left) Original Images, (Middle) Snapshot of thel aodel without
inconsistent with this occlusion constraint, and resulvimt we ﬁlsfg?nggf:t information, (Right) Snapshot of the 3-d matiel uses object
call “phantom planes”—i.e., planes that are not visiblarfrthe '
camera that photographed it. We penalize the distance bettie
offending phantom plane and the plane that occludes its frimw
the camera by nding additional correspondences. This setod
make the two planes lie in exactly the same location (i.ez¢ lthe
same plane parameter), which eliminates the phantom&iodu
problem.

al. [36] showed that knowledge of objects could be used to get

crude depth estimates, and Hoiem et al. [11] used knowleéige o

objects and their location to improve the estimate of thézoor.

In addition to estimating the horizon, the knowledge of otge

and their location in the scene give strong cues regardiadttl

structure of the scene. For example, that a person is moséy lik

to be on top of the ground, rather than under it, places certai

restrictions on the 3-d models that could be valid for a given
In this experiment, we create a photo-realistic 3-d model ghage.

a scene given only a few images (with unknown location/pose) Here we give some examples of such cues that arise when

even ones taken from very different viewpoints or with dttl information about objects is available, and describe howcare

overlap. Fig. 19, 20, 21 and 22 show snapshots of some ZfAcode them in our MRF:

models created by our algorithm. Using monocular cues, our(a) “Object A is on top of object B”

algorithm is able to create full 3-d models even when largehis constraint could be encoded by restricting the paint R®

portions of the images have no overlap (Fig. 19, 20 and 2}jn object A to be on top of the pointg 2 R* on object B, i.e.,

In Fig. 19, monocular predictions (not shown) from a singlgl 2 s 2 (if 2 denotes the “up” vector). In practice, we actually

image gave approximate 3-d models that failed to capture thee a probabilistic version of this constraint. We repregbis

arch structure in the images. However, using both monoculigequality in plane-parameter space € Ridi = Ri=( | R))).

and triangulation cues, we were able to capture this 3-d ar¢§ penalize the fractional error= R[] 2RjT i RjT 2R ;i @

structure. The models are available at:

E. Experiments

(the constraint corresponds to 0), we choose an MRF

http://make3d.stanford.edu/research potentialhs;;s; (:) = exp vy ( +j j) , wherey; represents

the uncertainty in the object recognizer output. Note tlat f
yij !'1 (corresponding to certainty in the object recognizer),

IX. INCORPORATINGOBJECTINFORMATION this becomes a “hard” constraim—Tz:( iTRi) RJ_T2:( ]_TR]_)'

In this section, we will demonstrate how our model can In fact, we can also encode other similar spatial-relatibps
also incorporate other information that might be availalit® choosing the vecto? appropriately. For example, a constraint
example, from object recognizers. In prior work, Sudderth €Object A is in front of Object B”can be encoded by choosing
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@) (b) (© (d)

(e) U]

Fig. 19. (a,b,c) Three original images from different vieigs; (d,e,f) Snapshots of the 3-d model predicted by ogorihm. (f) shows a top-down view;
the top part of the gure shows portions of the ground coflsectodeled as lying either within or beyond the arch.

@ (b) © (d)

Fig. 20. (a,b) Two original images with only a little overlajaken from the same camera location. (c,d) Snapshots fianinéerred 3-d model.

(@) (b) () (d)

Fig. 21. (a,b) Two original images with many repeated stmes; (c,d) Snapshots of the 3-d model predicted by our ighgor

2 to be the ray from the camera to the object. Detector [37] to detect pedestrians. For these objects,nvedzd

(b) “Object A is attached to Object B” the (a), (b) and (c) constraints described above. Fig. 2@/sltloat
For example, if the ground-plane is known from a recognizensing the pedestrian and ground detector improves the acygof
then many objects would be more likely to be “attached” to thime 3-d model. Also note that using “soft” constraints in MBF
ground plane. We easily encode this by using our connectg&ection 1X), instead of “hard” constraints, helps in estng

structure constraint. correct 3-d models even if the object recognizer makes aakest
(c) Known plane orientation

If orientation of a plane is roughly known, e.g. that a person
is more likely to be “vertical”, then it can be easily encoded X. CONCLUSIONS
by adding to Eq. 1 atermi( ;) =exp  wij | 2j ; here,w;

We presented an algorithm for inferring detailed 3-d sttt
represents the con dence, adrepresents the up vector.

from a single still image. Compared to previous approachas,
We implemented a recognizer (based on the features dedcriladgorithm creates detailed 3-d models which are both gtanti
in Section VI) for ground-plane, and used the Dalal-Triggdvely more accurate and visually more pleasing. Our apgroa
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@) (b) (© (d)

(e) ®

Fig. 22. (a,b,c,d) Four original images; (e,f) Two snapstsitown from a larger 3-d model created using our algorithm.

begins by over-segmenting the image into many small homodesarning (MCL) [30], [31] to divide the learning problem ot
neous regions called “superpixels” and uses an MRF to infemaller learning problems for each of the individual deesit
the 3-d position and orientation of each. Other than assymiMCL is a framework for optimizing graphical models based on a
that the environment is made of a number of small planes, weoduct of several marginal conditional likelihoods eaelying
do not make any explicit assumptions about the structurdn@®f ton common sets of parameters from an underlying joint model
scene, such as the assumption by Delage et al. [8] and Hoienaetl predicting different subsets of variables conditionadther
al. [9] that the scene comprises vertical surfaces standm@ subsets.
horizontal oor. This allows our model to generalize wellyes In detail, we will rst focus on learning r given the ground-
to scenes with signi cant non-vertical structure. Our algon truth depthsd (obtained from our 3-d laser scanner, see Sec-
gave signi cantly better results than prior art; both inrter of tion VII-A) and the value ofy; and ;s . For this, we maximize
guantitative accuracies in predicting depth and in ternfsaaftion the conditional pseudo log-likelihoddg P ( jX; ;y;R ; ) as
of qualitatively correct models. Finally, we extended thifeas to
building 3-d models using a sparse set of images, and shoawed h
to incorporate object recognition information into our tmed. X

The problem of depth perception is fundamental to computer +  logfa( i; jiyi sRitRy)
vision, one that has enjoyed the attention of many reseescrel i
seen signi cant progress in the last few decades. However, tNow, from Eqg. 1 note that,( ) does not depend on ; therefore
vast majority of this work, such as stereopsis, has usediptailt the learning perleFm simpli es to minimizing thie; norm, i.e.,
image geometric cues to infer depth. In contrast, singlagien = = argmin o ssii=1 - a».l_.(XIsi P 1.
cues offer a largely orthogonal source of information, ohatt |5 the next step, we leamn the parametersof the logistic
has heretofore been relatively underexploited. Given d&ith regression model for estimating in footnote 5. Parameters of
and shape perception appears to be an important buildindkblg, |ogistic regression model can be estimated by maximizieg t
for many other applications, such as object recognitio},[BB],  conditional log-likelihood. [42] Now, the parameters of the
grasping [39], navigation [7], image compositing [40], andeo |ogistic regression mode®(y; j j ; ) for occlusion boundaries
retrieval [41], we believe that monocular depth percepti@s ang folds are similarly estimated using the hand-labeleiy-

the potential to improve all of these applications, paftidy in  tryth ground-truth training data by maximizing its condital log-
settings where only a single image of a scene is available.  |ikelihood.

X
r=argmax  logfi( ijXi; i;Ri; r)
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APPENDIX

A.1 Parameter Learning v v

Since exact parameter learning based on conditional figell = arg max log 1 f1( iiXi; i;Ri; ) f20 45 jivi sRGR))
for the Laplacian models is intractable, we use Multi-Cdiodial Z i

=argmax logP( jX; ;y;R ; r)
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Note that the partition functioZ does not depend on. There- We formulate our MRF as
fore, from Eq. 2, 4 and 5 and fat= x' |, we have ) 1Y , Y .
P P PAXIY;R; )= o Ta(dijxiiyis ) fa(di; djjyij i RiiRj)
= arg min :<:1 ?:1 S | (Ri-l;-s.i i)d\i;si 1 Y B 2N
XX Fa(di; o dvige 5RisRy;RK)
+ ylj (RI-I,-SI i Rj-I;-Sj j )6Si 1Sj ik 2N v ! l .
j2N (i) si;sj2Bjj . . -
X X! T T A where, di 2 R is the depth (in log scale) at a poirt
+ Yi (Ris; i Rys; j)ds x; are the image features at poimt The rst term fq(:)
j2N (i) s;2Cj

models the relation between depths and the image features as
whereK is the number of superpixels in each image(i) is fi(dijxi;yi; ) = exp  yiidi x{ (i . The second term

the set of “neighboring” superpixels—one whose relations af2() models connected structure by penalizing differences in
modeled—of superpixel; Bjj is the set of pair of points on the the depths of neighboring points ds(d;;d;jyj ;Ri;Rj) =
boundary of superpixel andj that model connectivityC; is exp yjjji(Ridi Rjd;)jj1 . The third termfs() depends on

the center point of squarpixejel that model co-linearity and co- three pointsi,j andk, and models co-planarity and co-linearity.
planarity; andds, s, =  ds, ds, . Note that each of terms is aFor modeling co-linearity, we choose three poigtsq , and g

L, norm of a linear function of ; therefore, this is &1 norm lying on a straight line, and penalize the curvature of tine:li
minimization problem, [43, chap. 6.1.1] and can be compactl fa(ch; dj s deyipe s Ri; R} i R) =

written as . .
exp VYik iiRjdi  2Ridi + Rydkjj1

arg minx kAx: bk + kBxka + kCxikq whereyik = (yj + Yjk + ik )=3. Here, the “con dence” terny;

wherex 2 R3¢ 1 s a column vector formed by rearranging thdS Similar to the one described for Plane Parameter MRF; pixce

three x-y-z components of; 2 R® asxai 2 = i, Xsi 1 = in cases when the points do not cross an edgel (because modes i
y andxs = ;A is a block diagonal matrix such thatthis MRF are a dense grid), when we ggt to zero.
P .
A( jLS)+si; @i 2):8 = Rl s, is,and by 2
R3* 1 s a column vector formed from;s,. B and C are

all block diagonal matrices composed of rags & andy; they
represent the cross terms modeling the connected structore
planarity and co-linearity properties.

In general, nding the global optimum in a loopy MRF is dif -
cult. However in our case, the minimization problem is andan
Program (LP), and therefore can be solved exactly using any
linear programming solver. (In fact, any greedy methodudeig
a loopy belief propagation would reach the global minimeaoy F
fast inference, we implemented our own optimization method
one that captures the sparsity pattern in our problem, and by

approximating the.; norm with a smooth function: ) ] ] ] ]
Fig. 24. Enforcing local co-planarity by using ve points.

kxkq = (x)= L log(1+exp( x))+log(l+exp( X))

We also enforce co-planarity by penalizing two terms
Note thatkxk; = lim ;3 kxk , and the approximation canh(di; 1;dj ;dij +1;Vi G 1+ Rij 1Rij:Rij+1), and
be made arbitrarily close by increasing during steps of the h(d; 1;;d;j ;di+1 'Y( 1:(i+1 R 15:Rij iRiv1;). Each
optimization. Then we wrote a customized Newton method dasgrm enforces the two sets of three points to lie on the same
solver that computes the Hessian efciently by utilizingeth line in 3-d; therefore in effect enforcing ve pointg 15, g ,
sparsity. [43] G+1j, Gj 1, andg; +1 lie on the same plane in 3-d. (See
Fig. 24.)

Parameter learning is done similar to the one in Plane
Parameter MRF. MAP inference of depths, i.e. maximizing
For comparison, we present another MRF, in which we usegP (djX;Y;R; ) is performed by solving a linear program (LP).
points in the image as basic unit, instead of the superpixeldowever, the size of LP in this MRF is larger than in the Plane

and infer only their 3-d location. The nodes in this MRF ar®arameter MRF.
a dense grid of points in the image, where the value of eack nod
represents its depth. The depths in this model are in logdcal REFERENCES
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