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Modular design is a key challenge for enabling large-scale reuse of hardware modules. Unlike software, how-

ever, hardware designs correspond to physical circuits and inherit constraints from them. Timing constraints—

which cycle a signal arrives, when an input is read—and structural constraints—how often amultiplier accepts

new inputs—are fundamental to hardware interfaces. Existing hardware design languages do not provide a

way to encode these constraints; a user must read documentation, build scripts, or in the worst case, a mod-

ule’s implementation to understand how to use it. We present Filament, a language for modular hardware

design that supports the specification and enforcement of timing and structural constraints for statically

scheduled pipelines. Filament uses timeline types, which describe the intervals of clock-cycle time when a

given signal is available or required. Filament enables safe composition of hardware modules, ensures that the

resulting designs are correctly pipelined, and predictably lowers them to efficient hardware.
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1 INTRODUCTION

Like software languages, interfaces in hardware description languages (HDLs) simply consist of
arguments and simple datatypes. Unlike software, however, hardware inherits constraints from
the underlying physical circuits—the inputs are used and outputs are available during specific
cycles, and new inputs may only be provided when the circuit can process them. The rudimentary
interfaces of existing HDLs fail to capture these constraints, making modular design difficult. To
approach the reusability of software library ecosystems, HDLs need a systematic way to encode
these requirements for hardware modules.

Modern languages for hardware design fall into three categories. Embedded HDLs (eHDLs) use
software host languages for metaprogramming [Bachrach et al. 2012; Clow et al. 2017; Jane Street
2022; Lockhart et al. 2014; Nikhil 2004]. Accelerator design languages (ADLs) [Durst et al. 2020;
Hegarty et al. 2014, 2016; Koeplinger et al. 2018; Nigam et al. 2020; Zhang et al. 2008] are higher-
level languages that expose new abstractions and compile to HDLs. Finally, traditional HDLs, such
as SystemVerilog and VHDL, are the de facto standard for hardware design and interacting with
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hardware toolchains. ADLs and eHDLs must be compiled to HDLs to interact with hardware de-
sign toolchains and integrate proprietary black-box implementations of optimized primitives. Fur-
thermore, ADLs are often limited to a single domain, such as image processing, and can therefore
benefit from defining a foreign function interface to interact with eHDLs and other ADLs.

Composition in HDLs is challenging because interfaces only expose the names and value types
of input–output ports. However, efficient integration requires knowledge of timing behavior: the
number of cycles required to produce and consume outputs and inputs respectively, and whether
a module can be pipelined. In current HDLs, this timing information is latent. It appears in verbose
documentation files, encoded as constraints in build scripts [Synopsys Inc. 2023], or nowhere at
all, requiring users to read the implementation of each module to understand how to use it. An
alternative is to rely exclusively on latency-insensitive interfaces which eliminate all timing sen-
sitivity. Instead, the producer signals when its output is valid and the consumer signals when it
is ready to accept new inputs. While latency-insensitive interfaces are flexible, they are also inef-
ficient [Murray and Betz 2014], especially for statically scheduled modules which always take the
same number of clock cycles to produce outputs and accept new inputs.

The key to an ecosystem of reusable hardware is a low-level mechanism to safely and efficiently

compose hardware modules. Safe composition requires modules to specify and check timing details
such as latency and pipelinability, while efficiency requires that the interfaces do not add substan-
tial overheads. The efficiency requirement also rules out wrapping statically scheduled modules
with a latency-insensitive interface; instead, we would like to use the clock signal to synchronize
usage of the modules. The effect is a clear way to integrate hardware, regardless of whether it was
written in an eHDL, generated by an ADL, or implemented as a proprietary black box module.

Our solution is timeline types, which compactly encode latency and throughput properties of
statically scheduled hardware pipelines. Static pipelines have data-independent timing behav-
ior and encompass a large class of efficient hardware designs [Durst et al. 2020; Hegarty et al.
2014, 2016; Kemmerer 2022] including the pipelines generated by most high-level synthesis (HLS)
tools [Canis et al. 2011; Nigam et al. 2020; Pilato and Ferrandi 2013; Zhang et al. 2008]. Our type
system, inspired by separation logic [Reynolds 2002], proves that pipelined execution of a module
is safe by ensuring that all timing constraints are satisfied. Our contributions are as follows:

• We provide a characterization of pipelining constraints for static pipelines and model them
using timeline types in an HDL called Filament.

• We formalize these pipelining constraints using a log-based semantics of hardware and prove
our type system is sound with respect to the model.

• We demonstrate that Filament can integrate designs from several hardware genera-
tors [Durst et al. 2020; Kemmerer 2022; Vega et al. 2021] using timeline types.

• We show that Filament designs use fewer resources and run at faster frequencies than those
generated by hardware generators.

2 EXAMPLE

We will discuss the challenges associated with compositional hardware design by implementing a
pipelined arithmetic logic unit (ALU).

2.1 Traditional Hardware Description Languages

Figure 1a shows the implementation of the ALU in a traditional HDL. The interfaces for the
modules specify the inputs and outputs along with their bitwidths. The ALU’s circuit consists of
an adder and a multiplier, which perform their computations in parallel, and a multiplexer, which
selects between the two outputs using the op signal.
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module Add(a: 32, b: 32) -> (o: 32);

module Mul(a: 32, b: 32) -> (o: 32);

module Mux(sel: 1, a: 32, b: 32) -> (o: 32);

module ALU(op: 1, l: 32, r: 32) -> (o: 32) {

Mul M(l, r); Add A(l, r);

Mux Mx(op, A.out, M.out); o = Mx.out; }

(a) HDL implementation of ALU

clk

l 10

r 20

op 0

out 30

(b) Addition

clk

l 10

r 20

op 1

out 200

(c) Multiplication

Fig. 1. ALU implementation and waveforms generated when executing addition and multiplication.

We will use waveform diagrams to understand the execution behavior of this module. A wave-
form diagram explains the flow of signals in the circuit over time and usually with respect to the
global clock signal. Figure 1b shows the waveform generated when the ALU is provided with the
inputs 10 and 20 and the op code 0. Note that the output 30 is produced in the same cycle as the
inputs. However, Figure 1c shows what happens when we attempt to execute the multiplication
operation by setting op to 1. The timing behavior of the ALU changes—the product is produced
two cycles after the input is provided. Additionally, if the op is not asserted for an additional cycle,
the output is wrong. The problem is that an adder is combinational—it produces its output in the
same cycle as the inputs—while a multiplier is sequential—it takes several cycles to produce its
output. op is required for an extra cycle because the multiplier output is produced later than the
adder and the multiplexer needs to select the correct output in a later cycle using the op input.

The interfaces for ALU, the adder, and the multiplier do not capture these details. One option to
sidestep this problem is to “wrap” every module in a latency-insensitive interface, such as ready–
valid handshaking. But these interfaces incur overhead that can be prohibitive for fine-grained
composition [Murray and Betz 2014]. This paper aims to specify efficient, latency-sensitive inter-
faces based on clock cycles and to statically rule out misuses of these interfaces.

2.2 Filament

Filament is an HDL that allows users to directly specify and check the timing behavior of their
modules. Each component can be parameterized by multiple events which are used to specify its
timing behavior. Our ALU implementation has behaves unpredictably because adders and multi-
pliers have different timing behavior. Filament allows us to encode their timing behavior explicitly
using events which parameterize modules:

extern comp Add<T>(

@interface[T] go: 1, @[T, T+1] left: 32, @[T, T+1] right: 32) -> (@[T, T+1] out: 32);

extern comp Mult<T>(

@interface[T] go: 1, @[T, T+1] left: 32, @[T, T+1] right: 32) -> (@[T+2, T+3] out: 32);

Both components use the event) to specify their timing behavior. The adder is combinational—
it produces outputs in the same cycle as the inputs.This fact is encoded by the availability intervals
of the inputs and outputs: the inputs are provided in the half-open interval [),) + 1), which cor-
responds to the first cycle of execution of the component, and the output is produced during the
same interval. In contrast, a multiplier is sequential—it takes two cycles to produce its output. This
is encoded by stating that the output is available in the interval [) + 2,) + 3), two cycles after the
inputs are provided in the interval [),) + 1). In order to signal that the event ) has occurred, a
user of these modules must set the interface port go to 1, provide the inputs according to their
required intervals, and read the output when they are available. Multiplexers (not shown) are also
combinational and take all their inputs in the same cycle.
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comp ALU<G>(

@interface[G] en: 1

@[G, G+1] op: 1,

@[G, G+1] l: 32,

@[G, G+1] r: 32,

) -> (@[G+2, G+3] o: 32) {

A := new Add; M := new Mult;

Mx := new Mux;

a0 := A<G>(l, r);

m0 := M<G>(l, r);

mux := Mux<G>(

op, m0.out, a0.out);

o = mux.out; }

Like our HDL implementation, our Filament implementation
of the ALU explicitly instantiates all the hardware resources
it needs to use. The key difference is how Filament expresses
the use of the hardware instances through invocations. An in-
vocation schedules the execution of a hardware instance using
a particular set of events and provides all inputs. For example,
the invocation a0 of the adder A is scheduled using the event� .
By naming uses, Filament can check the timing behavior of the
module. There is no assignment for the go port of the adder—it
is automatically inserted by the compiler using the scheduling
event � . Invocations are a logical construct that are compiled
away by Filament (Section 5). Similarly, the multiplier and mul-
tiplexer are also scheduled using the event � . Instead of using outputs from the instance, the
multiplexer uses the ports on the invocations, reflecting the output from a particular use.

2.3 Checking Timing Behavior

However, when we attempt to compile this program, Filament gives us the following error:

mux := Mux<G>(op, m0.out, a0.out);

Available for [G+2, G+3) but required during [G, G+1)
G G+1 G+2 G+3

mux.left m0.out

Ourmultiplexer expects all of its inputs during the interval [�,� + 1) while the multiplier’s output
m0.out is available in [� + 2,� + 3). Filament requires that all inputs be available for at least as
long as the corresponding argument’s requirement. This was the problem in our original HDL
design (Section 2.1)—the output of the adder is available in a different cycle from the multiplier
which results in unexpected timing behavior. Filament’s type system statically catches this error.

The solution is to use registers to store values and make them available in future cycles. A reg-
ister’s signature captures its timing behavior—the output is available one cycle after the input1:

comp Reg<G>(@interface[G] en: 1, @[G, G+1] in: 32) -> (@[G+1, G+2] out: 32)

comp ALU<G>(@[G, G+3] op: 32, ...) {

a0 := A<G>(l, r); R0 := new Reg; R1 := new Reg;

r0 := R0<G>(a0.out); r1 := R1<G+1>(r0.out);

mux := Mux<G+2>(op, r1.out, m0.out); ... }

The corrected implementation uses two
registers to make the sum available in the
same cycle as the multiplier.The outputs from
the first and second registers are available in
[� + 1,� + 2) and [� + 2,� + 3), respectively. We schedule the execution of the multiplexer in cy-
cle � + 2 when both the outputs are available. This design is still problematic because the op is
only available in [�,� + 1) while the multiplexer reads it in [� + 2,� + 3). We fix this by making
op signal available in [�,� + 3). This results in a correct ALU implementation.

Such encoding of signal delays, also explored in HIR [Majumder and Bondhugula 2021] and
Spade [Skarman and Gustafsson 2023], enables static reasoning for imbalanced pipeline paths.
However, a crucial piece is still missing: it is not clear when the ALU is ready to accept new inputs:
should we wait till outputs are produced or can the module process multiple inputs in parallel?

2.4 Pipelining

1

2

3

(a) Sequential processing

Pipelining is a common optimization that enables hardware to process
multiple inputs in parallel. A sequential module processes its inputs
one at a time (Diagram (a)), while pipelined module can overlap the
processing of multiple inputs (Diagram (b)).

1This is a simplified interface for a register. Full interface provided in Section 3.6.
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1

2

3

(b) Pipelined processing

Pipelining is challenging because it requires reasoning about the in-
teraction betweenmultiple, concurrent executions of the same physical
resources—correctly pipelining requires using values from the correct
pipeline stage and ensuring there are no structural hazards, i.e., there
are no conflicting uses of internal components.

comp Add<T:1>(...)

comp Mult<T:3>(...)

comp ALU<G:1>(...)

Filament presents a concise solution: each event has an associated de-

lay that specifies how many cycles to wait before accepting new inputs.
We can update the signature of the adder and multiplier to reflect this.
Since the adder is combinational, it can accept new inputs every cycle. However, the multiplier
accepts new inputs every 3 cycles. For user-level components, Filament ensures that the delay for
each event is correct, i.e., the component can be correctly pipelined. We’ll redesign our ALU to
be pipelined and accept new inputs every cycle by specifying that the delay of � is 1. Since we
know our design is not pipelined, Filament will generate errors explaining why the design cannot
be pipelined.

comp ALU<G:1>(

Event may retrigger every cycle

@[G, G+3] op: 1, Signal lasts for 3 cycles

first

second

Our first problem is that the signature requires input signal op to be available for three cycles
whereas the pipeline may trigger every cycle. The waveform diagram demonstrates the problem—
the input for op from the first iteration will overlap with the input for the second iteration. How-
ever, op is a physical port in a circuit and can only hold one value at a time; this is a fundamental
physical constraint of hardware design. Filament requires that the delay of an event is at least as
long as the length of any availability interval that uses it; we must make op’s availability interval
1-cycle long. We choose [� + 2,� + 3) since the multiplexer uses op during this interval.

comp Mult<T: 3>(

Event may retrigger every 3 cycles

comp ALU<G: 1>(

Event may retrigger every cycle

m0 := M<G>(l, r);

Cannot safely pipeline

Next, Filament complains that while our ALU pipeline
may accept new inputs every cycle, the multiplier M can
accept new inputs every 3 cycles. This is a fundamental
limitation of the multiplier circuit we’re using; to fix it, we
must use a different multiplier. Filament catches yet an-
other pipelining bug that arises from composition: every
subcomponent used in a pipeline must be able to process inputs at least as often as the pipeline it-
self. Fixing this will result in a correct, fully pipelined ALU. A key goal of Filament is to ensure that
changing the pipelining behavior of a component does not create additional bugs—the pipelined
ALU, like the sequential ALU, only uses signals when they are semantically valid.

comp ALU<G: 1>(@interface[G] en: 1, @[G+2, G+3] op: 1, ...) {

A := new Add; Mx := new Mux; R0 := new Reg; R1 := new Reg; FM := new FastMult; // delay = 1

a0 := A<G>(l, r); r0 := R0<G>(a0.out); r1 := R1<G+1>(r0.out); m0 := FM<G>(l, r);

mux := Mux<G>(op, r1.out, m0.out); o = mux.out; }

2.5 Area-Throughput Trade-offs with Filament

While pipelining improves the throughput of a component, it also increases its resource usage.
For large circuits, like floating-point multipliers, it often makes sense to reuse the same circuit over
multiple clock cycles. However, circuit reuse affects pipelining behavior: the ability of a compo-
nent to start new iterations depends upon how sub-components are being shared. Filament’s type
system tracks resource reuse and ensures that a well-typed component does not create structural
hazards for reuses components.
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def init(left) -> (acc, q):

# Initialize the computation

def nxt(a, q, div) -> (an, qn):

# One step of the computation

def div(l, r):

(qn, an) = init(l)

for _ in range(0, 8):

(qn, an) = nxt(an, qn, r)

return qn

(a) Pseudocode for restoring division.

comp Comb<G: 1>(...) -> (

@[G, G+1] out: 8) {

i := new Init<G>(left);

n0 := new Nxt<G>(i.A, i.Q, r);

...

n7 := new Nxt<G>(n6.A, n6.Q, r);

out = n7.Q;

(b) Fully combinational divider.

comp Pipe<G: 1>(...) -> (@[G+7, G+8] q: 8) {

i := new Init<G>(left); // Instantiate and invoke

n0 := new Nxt<G>(i.A, i.Q, r);

ra0 := new Reg<G>(n0.A);

rq0 := new Reg<G>(n0.Q);

n2 := new Nxt<G+1>(ra0.out, div, rq0.out);

...

out = n7.Q;

(c) Pipelined divider. Instances scheduled in successive cycles.

comp Iter<G: 8>(...) -> (@[G+7, G+8] q: 8) {

I := new Init<G>(left);

N := new Nxt; RA := new Reg; RQ := new Reg;

n0 := N<G>(i.A, i.Q, r);

ra0 := RA<G>(n0.A); rq0 := RQ<G>(n0.Q);

n1 := N<G+1>(ra0.out, rq0.out);

ra1 := RA<G+1>(n1.A); rq1 := RQ<G+1>(n1.Q); ...

out = n7.Q;

(d) Iterative divider. Components reused over multiple cycles.

Fig. 2. Implementations of 8-bit restoring division demonstrating area-throughput trade-off. Filament’s type

system ensures that each implementation is correctly pipelined and introduces no resource reuse conflicts.

To demonstrate how Filament enables safe exploration of area-throughput trade-offs, we imple-
ment three different versions of a divider using a restoring division algorithm (Figure 2a). The
combinational components Init and Nxt compute a quotient (.Q) and an accumulator value (.A).
For an 8-bit value, we must apply Nxt 8 times.

Combinational divider. Figure 2b implements a combinational divider which computes the out-
put in the same cycle when the inputs are provided. All Nxt instances are scheduled using the
event� which means that they’ll execute in the same cycle. While the latency of the design is 1, it
is quite inefficient because it schedules a lot of complex logic in the same clock cycle and forces the
design to operate at a low frequency. However, combinational designs are a good starting point
to ensure that our algorithm is correct.

Pipelined divider. Tomake our design run at a higher frequency, we can pipeline it by scheduling
each Nxt instance to execute in successive cycles. To correctly forward the values, we instantiate
registers to hold onto values of the quotient and the accumulator for each Nxt component. Fig-
ure 2c shows the implementation: the delay of the module remains 1, allowing it to process a new
value every cycle, but the latency is now 8 cycles unlike the combinational implementation. The
pipelining also breaks up the long combinational path allowing the design to operate at a higher
frequency.

Iterative divider. Both the combinational and pipelined inputs can process a new input every
cycle but require a large amount of hardware since they instantiate 8 instances of the Nxt compo-
nent and 16 registers for the pipelined version. We can instead use the same Nxt component and
registers by implementing an iterative design.

comp Nxt<T:1>(...)

Delay requires uses to be 1 cycle apart

s0 := N<G>(i.A, div, i.Q); First use

s1 := N<G>(s0.AN, div, s0.QN); Second use

We start with our combinational design and
change all the invocations to use the same instance
# . Filament tells us that this design is buggy. We’re
attempting to send two different inputs into the Nxt
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Events (Sec 3.1) parameterize 

a component and represent its 

start time. The delay indicates 

number of cycles before 

module accepts new inputs.

Interface ports (Sec 3.2) are 

the physical ports by which an 

event is provided at runtime. 

Each event may have at most 

one interface port.

Instantiation (Sec 3.3) 

constructs specific 

physical circuits.

Invocations (Sec 3.4) 

are named uses of 

instances that are 

scheduled using events.

Connections (Sec 3.5) 

represent physical wires.

Event Timelines allow reasoning about 
pipelined execution. An event G with delay 
n can trigger every n cycles. Invocations 
scheduled at G+i may reexecute at or after 
G+i+n. The type checker ensures that 
pipelined use of invocations do not conflict.

Two cycles

Three cycles

Uneven cycles

(a) Possible timelines for event with delay of 2

comp main<G: 4>(

  @interface[G] go: 1,

  @[G, G+1] a: 32, 

  @[G+2, G+3] b: 32

) -> (

  @[G, G+1] out: 32

) {

  A := new Adder;

  a0 := A<G>(a, b);

  out = a0.out;

}

Fig. 3. Overview of the Filament language. Programs are a sequence of component definitions which corre-

spond to individual modules. The signature of the component is parameterized using events. The body of

component consists of three types of statements: Instantiations, connections, and invocations.

instance in the same cycle. However, Nxt is a physical circuit and can only process one input every
cycle. Therefore, we must schedule the uses of the instance in different cycles and add registers to
hold onto the values, similar to the pipelined implementation.

comp Iter<G:1>(...)

Event may trigger every cycle

causing shared uses to conflict

s0 := N<G>(i.A, div, i.Q);

First use

s7 := N<G+7>(s6.AN, div, s6.QN);

Last use

With these changes, Filament complains with a new error
message. Since we’re sharing the instance Nxt over 8 cycles,
the divider cannot start processing new inputs every cycle.
Again, this is because Nxt is a physical circuit that can only
process one input a cycle. To fix this, we can change the delay
to 8 cycles which guarantees to Filament that the instance
will only be run every 8 cycles, resulting in the final design
(Figure 2d). This ensures that all iterations using the instance N complete before new inputs are
provided. Implicitly, Filament showed us that reusing the instance is a trade-off: while we use fewer
resources, our throughput is also reduced since our iterative implementation can only process a
new input every 8 cycles compared to every cycle for the pipelined implementation.

2.6 Summary

Filament is an HDL for safe design and composition of static pipelines. Specifically, Filament pro-
grams can specify and check timing properties of hardware modules and ensure that:

(1) Values on ports and wires are only read when they are semantically valid.
(2) Hardware instances are not used in a conflicting manner.

These properties ensure that the resulting pipelines are safe, i.e., there are no resource conflicts, and
efficient, i.e., they can overlap computation as specified by their interface without any overhead.
Filament’s utility extends to components defined outside the language as well. By giving external
modules a type signature, users can safely compose modules. Section 3 overviews the constructs
in Filament, Section 4 explains how Filament’s type system checks pipeline safety, and Section 5
shows how Filament’s high-level constructs are compiled to efficient hardware.

3 THE FILAMENT LANGUAGE

Figure 3 gives an overview of the Filament language. Filament’s level of abstraction is comparable
to structural HDLs where computation must be explicitly mapped onto hardware. Filament only
has four constructs: components, instantiation, connections, and invocations. The first three have
direct analogues in traditional HDLs while invocations are a novel construct.
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comp AddMult<G: 2>(

@interface[G] go: 1,

@[G, G+1] a: 32, @[G, G+1] b: 32, @[G+1, G+2] c: 32

) -> (@[G+2, G+3] out: 32) { commands }

(a) Component’s signature in Filament

clk

go

a 1 2

b 1 2

c 1 2

out 1 2

min delay1 2

(b) Waveform showing pipelined use

Fig. 4. Signature andwaveform diagram. The component allows pipelined execution or reuse after two cycles

allowing overlapped execution. Shaded regions represent unknown values.

3.1 Events and Timelines

Events are the core abstraction of time in Filament. Instead of using a clock signal, designs use
events to schedule computation. The Filament compiler generates efficient, pipelined finite state
machines to reify events (Section 5.2).

Defining events. There are only two ways to define events: (1) component signatures bind event

variables like� , and (2) users can write event expressions such as�+= where= is a constant. Events
have a direct relationship to clock: if � occurs at clock cycle 8 , then � + = occurs at clock cycle
8 +=.2 This relationship with clock is crucial since it allows Filament to represent timing properties
of components defined in clock-based HDLs. Adding event variables (�0 +�1) is disallowed since
events correspond to particular clock cycles, and it is meaningless to add them together.

Timeline interpretation of events. In order to capture potential resource conflicts from pipelined
execution, Filament interprets events as a set of possible timelines. A timeline for an event� with a
delay = is any infinite sequence of 1 cycle long clock pulses such that each pulse is at least = cycles
apart. Figure 2a shows a set of valid timelines for an event with delay 2. By imbuing events with a
timeline interpretation, Filament can reason about repeated execution and consider how pipelined
executions may affect each other. By reasoning about such properties, we can define and enforce
safety properties for pipelined execution of hardware. Furthermore, the timeline interpretation
has a direct relationship to hardware: the delay of an event represents how many cycles a user
must wait before providing a new set of inputs. This is usually referred to as the initiation interval
of a pipeline by hardware designers (Section 4.3).

3.2 Components

Filament programs are organized in terms of components which describe timing behavior in their
signatures and their circuit using a set of commands. Figure 4 shows the signature of a component
in Filament (Figure 4a) and a waveform diagram visualizing two sets of inputs being processed in
parallel (Figure 4b). The component is parameterized using the event � with a delay of 2 which
means that pipelined use can begin two cycles after the previous use.

Interface ports. Hardware components typically have control ports which signal when values on
data ports are valid and that the computation should be performed. Values on control ports are
always considered semantically valid while values on data ports are only valid when the corre-
sponding control port is high. Filament distinguishes control ports by defining them as interface
ports. Interface ports are 1-bit ports that are associated with a particular event. When an interface
port is set to 1, it signals to the component that the corresponding event has occurred. For example,

2All event variables operate in the same clock domain, but this limitation can be removed in the future.
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setting go to 1 on an AddMult instance (Figure 4a) makes the module start processing the inputs.
The availability intervals of all ports that use an event are relative to when the corresponding
event’s interface port is set to 1. If an event does not have an interface port, then the module can
assume that the event triggers every = cycles where = is the event’s delay.

Availability intervals. The input and output ports of the component describe their availability
in terms of the events bound by a component. For AddMult (Figure 4a), all ports use the event
� . Availability intervals are half-open: for example, the input port a is available during [�,� + 1)
which means it available during the first cycle when the component is invoked. Inside the body of
a component, an input’s availability interval represents a guarantee while an output’s availability
requires a requirement that the body must fulfill. When using a component, this is reversed: inputs
have requirements that must be fulfilled by the user while outputs have guarantees.

3.3 Instances

All computations in a hardware designmust be explicitlymapped onto physical circuits. Filament’s
new keyword allows instantiation of subcomponents.

comp Add<T: 1>(@[T, T+1] left: 32, @[T, T+1] right) -> (@[T, T+1] o: 32);

comp AddTwo<G: 1>(...) { A0 := new Add; A1 := new Add; ... }

The above program instantiates two instances of the Add component named A0 and A1 that can
be used independently. Note that the instantiations do not provide bindings for the Add’s event) ;
invocations are responsible for providing those and scheduling the execution of an instance.

3.4 Invocations

F := new Reg; // FSM

F.in = F.out == 0 ? 1 : 0;

M := new Mult; A := new Add;

M.right = F.out == 0 ? r : M.out

M.left = F.out == 1 ? l : M.out

Resource reuse in hardware designs is time-multiplexed, i.e.,
different uses of the same resources are scheduled to occur at
different times.This is done by building a finite state machine
(FSM) using a register and using the output of the register to
select which inputs to use. The example program computes
(; × A )2 using a single multiplier using the FSM F to forward the inputs ; and A into the multiplier
in the first cycle and the output of the multiplier in the second cycle. However, the assignment
to M.left incorrectly forwards the value from M.out in the first cycle. Mistakes in the control
logic for the FSM do not lead to any visible errors; this error will lead to the data getting silently
corrupted and propagating into other parts of the system.

comp Square<T:1>(

@[T, T+1] left: 32,

@[T, T+1] right: 32

) -> (

@[T+1, T+2] out: 32);

M := new Mult;

m0 := M<G>(l, r)

m1 := M<G+1>(

m0.out, m0.out)

In contrast, every use of an instance in Filament must be explicitly
named and scheduled through an invocation. The first invocation of
the multiplier M is scheduled using the event � , uses the inputs ; and
A , and is named m0. The second invocation, scheduled one cycle later
at � + 1, can then use m0.out to refer to the output of the first exe-
cution and pass it into the multiplier as an input. Because the second
invocation is scheduled one cycle later, the input ports have a different
requirement: the inputs must be available in the interval [� + 1,� + 2)
as opposed to [�,� + 1) in the first invocation. This allows Filament to check that m0.out is se-
mantically valid when it is used as an input to m1 and that the two uses of the multiplier are
scheduled to occur at different times, allowing the compiler to generate correct FSMs to schedule
instance reuse. Each invocation only provides inputs for the data ports and elides inputs for the
interface ports. During compilation, Filament’s compiler automatically infers assignments for the
input ports and generates efficient, pipelined FSMs to schedule the invocations (Section 5).
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3.5 Connections

Filament programs allow ports to be connected and requires that the source is semantically valid
for at least as long as the destination.

comp Add<G:1>(@[G, G+3] source: 32) -> (@[G, G+1] dest: 32) { dest = source; }

Connections are physically implemented as wires connecting two ports in the circuit and are con-
tinuously active.

3.6 Interfacing with External Components

Filament’s extern keyword allows the user to provide type-safe wrappers for black box modules
by specifying a type signature without a body. Filament’s standard library, which provides signa-
tures for components like multipliers and registers, is defined using extern components.

Phantom events. Phantom events allow Filament to model the behavior of components like
adders which are continuously active and do not take an explicit enable signal. In the following
signature, the event � is a phantom event because there is no corresponding interface port for it
in the signature. Section 5.4 describes how user-level components can use phantom events.

extern comp Add<G: 1>(@[G, G+1] l: 32, @[G, G+1] r: 32) -> (@[G, G+1] o: 32))

Ordering constraints. In order to capture the full expressivity of external components, Filament
allows defining ordering constraints between events. For example, combinational components can
provide a valid output for more than one cycle if the inputs are provided for multiple cycles. There-
fore, a more precise interface of a combinational adder is:

comp Add<G: L-G, L: 1>(@[G, L] l: 32, @[G, L] r: 32) -> (@[G, L] o: 32) where L > G

Theevents� and !mark the start and end for the input and output availability intervals. In order
to ensure that the interval [�, !] is well-formed, the signature requires ! > � . The component
guarantees that the output is provided for as long as the inputs are provided.

A := new Add;

// delay = (G+3)-G = 3

a0 := A<G, G+3>(x, y);

Parametric delays. The new signature of adder additionally specifies
a parametric delay of ! −� cycles to signal that the adder may not be
reused while it is processing a set of inputs. In order to generate static
pipelines which have input-independent timing behavior, Filament requires all such expressions
to evaluate to a constant value. Like the example, an invocation of Addmust provide some binding
of the form� = ) + 8 and ! = ) + : such that : > 8 , ensuring that the delay for the corresponding
invocation is a compile-time constant : − 8 and the ordering constraint ! > � is satisfied.

The signature of registers in Filament allows them to provide the output for as long as needed,
similar to an adder. However, because a register is a state element, it only requires its input for
one cycle. Furthermore, the delay signals that the register can accept a new write during the last
cycle when the output is available.

comp Register<G: L-(G+1), L: 1>(

@interface[G] go: 1, @[G, G+1] in: 32) -> (@[G+1, L] out: 32) where L > G+1;

4 TYPE SYSTEM

Filament’s type system enforces two fundamental restrictions of hardware design:

(1) All reads only use semantically valid values. A port or wire will always have a value on it.
Filament’s availability intervals mark when the values are semantically valid.

(2) Writes do not conflict. This is a corollary of the property that uses of a resource must not
conflict because use of a resource is represented through a write.
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Event delay must be at least as 
long as any interval availability

[T, T+4] [T+2, T+6]

A.left = l1A.left = l0

Ensure that writes to the 
same port do not conflict

[T, T+1) [T+1, T+2)

in = out

⊄

Ensure that all reads use 
values that are available 

Fundamental 

Constraints

Well Formed Safe Pipelinability
Invocations must be 
scheduled n cycles apart

/* A: Adder<T:n> */

a0 := A<G>(…)

a1 := A<G+5>(…)[T+1, T+2)

/* A.in: [T, T+1) */

a0 := A<G>(x)

Ports used by invocation 
must be available

comp M<G:n>(

  @[G, G+k] in

) -> (@[G+4, G+l out)

Scheduling event’s delay 
should be more than 
subcomponent’s delay 

comp M<G:m>(…) {

 /* A: Adder<T:n> */

 a0 := A<G>(…) 

Invocations must not 
conflict when pipelined

a0 := A<G>(…)

a1 := A<G+5>(…)

Fig. 5. Overview of the Filament type system. The fundamental constraints of hardware design imply other

constraints. Well-formedness ensures that one execution of a component is correct. Safe pipelining ensures

that pipelined executions of the component are correct.

Filament ensures these properties using two checking phases: well-formedness checking, which
ensures that a single execution of a component is correct, and safe pipelining, which ensures that
pipelined executions of a component are correct.

4.1 Delay Well-Formedness

The delay of an event encapsulates all possible conflicts between parts of the pipeline scheduled
using it. Filament requires that the delay of an event is at least as long as each interval thatmentions
it which ensures that instance reuse does not create conflicts between its input and output ports.

I
t

I
t+n

d

The proof is straightforward: for two invocations at time C and
C + = such that = ≥ 3 where 3 is the delay, let �C and �C+= be the
availability intervals of the input 8 . Since we know that the start
times of the intervals are at least 3 cycles apart (�C+= − �C ≥ 3), and that length of the intervals is
bounded by 3 (|�C | ≤ 3) we can conclude that they do not overlap.

4.2 Well-Formedness

Valid reads. In order to ensure this property, Filament needs to make sure that port values are
only read when they are semantically valid. Signals are used in two places:

(1) Connections (Section 3.5) forward a value from one port to another. Filament ensures that
the availability of the output port is at least as long as the requirement of the input port.

(2) Invocations (Section 3.4) schedule the use of a component instance using a set of events.
Checking the validity of an invocation boils down to two steps: the requirements of the
instance’s input ports can be computed by binding the event variables in its signature to the
invocation’s event. Next, each argument essentially represents a connection between the
instance’s input and the argument and is checked using the criteria for connections.

comp Mult<T:3>(...);

comp main<G:10>() {

M := new Mult;

// busy b/w [G, G+3]

a0 := M<G>(a, b);

// busy b/w [G+1, G+4]

a1 := M<G+1>(a0.out, b);

Conflict-free. If an invocation schedules an instance with delay
3 using the event � , the instance may not be reused between
[�,�+3).This both ensures that the there are no conflicts between
input and output ports (Section 4.1) and that none of the subcom-
ponents conflict. The latter property holds because safe pipelining
constraints ensure that a valid delay can correctly encapsulate all
possible conflicts between subcomponents (Section 4.4). In the ex-
ample program, the two invocations of M overlap causing Filament to reject this program.
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4.3 Initiation Intervals

Pipelining is an important optimization since it allows a module to process multiple inputs in par-
allel. For example, a multiplier with a three cycle latency, but an initiation interval of one cycle
takes three cycles to compute an output but can accept new inputs every cycle. In Filament, the
delay of an event corresponds to initiation interval. While hardware designers talk about initia-
tion intervals of a component, Filament generalizes it by allowing a component to have multiple
events. In this case, each event specifies the initiation interval of some part of the internal pipeline.
Filament ensures that the delay of a module describes a valid initiation interval, defined as follows:

Definition 4.1 (Initiation Interval). Let % (C) be the execution of pipeline % at time C . % (C0)⊥% (C1)
states that the pipeline executions of % at C0 and C1 do not have resource conflicts. Then � is a valid
initiation interval of pipeline % if and only if

∀= ≥ 0 % (C) ⊥ % (C + � + =)

This definition requires that the pipeline is able to accept new inputs after any amount of time
after the initiation interval. There might be other delays smaller than the initiation interval which
allow the pipeline to accept new inputs in a small window of time before becoming invalid again.
This would correspond to the following definition of an initiation interval � :

∀: ≠ 0 % (C) ⊥ % (C + : × � )

Filament uses the first definition because delays are also used to check the well-formedness
constraints of a component. If we used the second definition, thewell-formedness constraint would
require that if an instance is scheduled at time C , it may only be scheduled again at other times
: ∗ C which we think is less compositional. Regardless, this is not a fundamental limitation since
both definitions can be encoded and enforced.

4.4 Safe Pipelining

While well-formedness ensures that one execution of a module is correct, i.e., all reads use valid
values and there are no conflicts, safe pipelining must ensure that pipelined executions of the com-
ponent do not create any additional conflicts. Checking that pipelined executions do not conflict
is very similar to checking that invocations of the same instance do not conflict. This is because
pipelined execution is exactly the same—an instance being reused after a period of time. Filament
must show that for an invocation scheduled using event � , another invocation scheduled at any
time after � + 3 (where 3 is the delay) does not conflict with the first invocation. The following
checks are sufficient to prove this.

Triggering Subcomponents. Filament requires that when an event is used to invoke a subcom-
ponent, the event’s delay must be at least as long as the delay of the subcomponent’s event.

comp Mult<G:3>(@interface[G] go: 1, ...)

comp main<T:1>(@interface[T] go: 1, ...) { M := new Mult; m0 := M<T+2>(...) }

The event) + 2 is used to schedule the invocation of instance" which has a delay of 3. However,
) + 2 has a delay of 1, same as ) . This is problematic because main may trigger every cycle while
M can only support computations every 3 cycles. Filament therefore rejects this program.

comp Mult<G: 3>(...)

comp main<T: 3>(...) {

M := new Mult;

m0 := M<T+2>(...);

m1 := M<T+10>(...);

Reusing Instances. Previous checks already ensure that: (1)
shared invocations do not conflict during one execution of the
pipeline, and (2) pipelined execution of an invocation does not con-
flict with itself. However, we also need to ensure that pipelined
invocations of a shared instance do not conflict with each other.
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a0 m0 m1

a1 m0 m1

conflicting use

b

a

Theexample programwill pass all our previous checks
but is erroneous: executing the pipeline at time ) and
) + 10 will cause the m1 from the time ) execution to
conflict with m0 from the time) +10 execution. Because Filament’s definition of initiation interval
allows re-execution at any time in the future, we must require that all invocations of a shared
instance complete before the pipelined execution begins. The following is sufficient to ensure this:
the delay must be greater than the number of cycles between the start of the earliest invocation
and the end of the last invocation of a shared instance.

comp Dyn<G: ??, L: ??>(..) {

M := new Mult;

a0 := M<G>(a, b);

a1 := M<L>(a0.out, b); }

Dynamic Reuse. Since Filament components can be parameter-
ized by multiple events, it is possible to invoke an instance using
two different events. In the example program, the type-checker
would have to prove that the intervals [�,� + 3) and [!, ! + 3) do
not overlap to enforce conflict freedom. The constraint ! ≥ � + 3 is sufficient to prove this. How-
ever, there is no way to statically pipeline this module: the delay of � is dynamic, it depends on
exactly which cycle ! is provided which cannot be known a priori. There is no compile-time con-
stant value that can express the delays for both events. This is because delays describe the timeline
for a single event whereas dynamic modules require relating multiple events. Filament’s solution
is to disallow ordering constraints between events in user-level components which disallows the
example program. External components (Section 3.6) can still use ordering constraints, but such
constraints can only be satisfied using the natural order defined on � + = events. This means in a
well-typed program:

(1) All delays evaluate to compile-time constants.
(2) Invocations of a shared component all use the same event.

These constraints allow the compiler to generate efficient, statically timed pipelines from well-
typed programs. Extending Filament with safe dynamic pipelines is an avenue for future work.

5 COMPILATION

Figure 6 shows an overview of the compilation flow. The primary goal of Filament’s compila-
tion pipeline is to transform the abstract schedules of invocations into explicit, pipelined control
logic. The compiler first lowers programs into Low Filament which is an untyped extension of
the Filament language that explicitly uses pipelined finite state machines (FSMs) to coordinate
the execution of a module. Next, the compiler translates the program into the Calyx intermediate
language [Nigam et al. 2021] which performs generic optimizations and generates circuits.

5.1 Low Filament

Low Filament is an untyped version of Filament that introduces new constructs to explicitly rep-
resent the pipelined execution of a module.

Explicit Invocations. Low Filament requires all ports corresponding to an invocation to be ex-
plicitly assigned. This includes interface ports, which high-level Filament manages implicitly.

in = g1 ? out;

in = g2 ? out;

GuardedAssignment. Filament uses guarded assignments to expressmultiplex-
ing of signals and correspond directly to guarded assignments in Calyx [Nigam
et al. 2021]. The assignment only forwards the value from out when the guard
is active. Otherwise, the value forwarded to in is undefined. Calyx’s well-formedness condition
requires that only one of the guards is active at a time for any given source port.
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Filament

Bind 
check

Interval 
check

Phantom 
check

Type Checking

Lowering

Sec 5.2
Calyx represents the final hardware. 

Assignments to invocations have been 

replaced with the corresponding 

instance.

Compile

Sec 5.3

component main(
 go: 1, a: 32, b: 32

) -> (out: 32)  {

 cells {
   Gf = fsm_3();A = Adder;

 }

 wires {
   Gf.go = go; out = A.out;

   A.go = Gf._0 || Gf._2;

   A.left = Gf._0 ? a;

   A.right = Gf._0 ? a;

   A.left = Gf._2 ? b;

   A.right = Gf._2 ? b;

  }

 control {/* empty */}

}

comp main<G>(...) {
  fsm Gf[3](go);

  A := new Adder;

  a0 := invoke A<G>;
  a0.go = Gf._0;

  a0.left = Gf._0 ? a; 

  a0.right = Gf._0 ? a;

  a1 := invoke A<G+2>; 

  a1.go = Gf._2;

  a1.left = Gf._2 ? b; 

  a1.right = Gf._2 ? b;

  out = a0.out;

}

Low Filament (Sec 5.1) program 

that uses an FSM to explicitly 

schedule execution of invocations 

a0 and a1. Inputs for each 

invocation is explicitly guarded 

using FSM states corresponding 

to the scheduling event.

comp main<G: 4>(
  @interface[G] go: 1,

  @[G, G+1] a: 32, 

  @[G+2, G+3] b: 32
) -> (@[G, G+1] out: 32) {

  A := new Adder;

  a0 := A<G>(a, a);
  a1 := A<G+2>(b, b);
  out = a0.out;
}

Fig. 6. Compilation Flow. Filament programs are type checked (Section 4) and lowered to Low Filament

(Section 5.1) programs. Lowering (Section 5.2) instantiates explicit FSMs to schedule invocation. Finally, Low

filament programs are compiled to Calyx [Nigam et al. 2021] which optimizes the design and generates

hardware circuits.

fsm F[n](trigger);

G G+1 G+2 G+3

trigger

Finite state machines. Low Filament also provides the fsm construct to
explicitly instantiate a pipelined FSM. It defines the FSM F with = states and
a single input port trigger which triggers its execution. This generates a
shift-register of size = with ports: F._0, …, F._{n-1}. If trigger is set to 1 at
event� , the port F._i will become active at event� + 8 .

5.2 Generating Explicit Schedules

The compilation from Filament to Low Filament ensures that all high-level invocations have been
compiled into explicit invocations. Figure 6 shows the compilation process for a program that uses
an adder (A) through two invocations (a0 and a1).

FSMGeneration. Thecompiler instantiates an FSM for each event parameterizing themodule.The
example programuses event� to schedule the invocations.The compilerwalks over all expressions
� + 8 in the program to compute the number of stages for the pipelined FSM. While the original
program does not explicitly mention the event� +3, it is implied by the output port a1.outwhich
is active in the interval [� + 2,� + 3]. The compiler instantiates the FSM Gf with 3 states triggered
by the go signal. Note that the delay of the FSM does not affect the generation of the FSM.

Triggering Interface ports. The compiler then lowers the invocations by generating explicit as-
signments to the adder’s interface port go.The first invocation, scheduled at� , uses the port Gf._0
to trigger the invocation while the second invocation, scheduled at � + 2, uses the port Gf._2.

Guard Synthesis. In order to ensure that assignments from the two invocations to the data ports
left and right do not conflict, the compiler synthesizes guards for the assignments. If the input
port of an invocation require inputs during the interval [� + B,� + 4], the compiler generates
the guard Gf._s || ... || Gf._e for the guard. Since the program is well-typed, the guard
expressions for each invocation are guaranteed to not conflict (Section 4).
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5.3 Lowering to Calyx

Low Filament is intentionally designed to be close to Calyx, so compilation is straightforward. For
each FSM size =, we generate a Calyx component and instantiate it for the corresponding Filament
component.The FSM is simply a sequence of registers connected together. Since assignments to all
ports are explicit in Low Filament, we can simply compile the invocations by replacing them with
the corresponding instance name. In the example program, assignments to both a0.left and a1.

left are compiled to assignments to A.left. Since Filament guarantees that the generated guards
are disjoint, we can be sure that Calyx will generate correct FSMs.

5.4 Optimizing Continuous Pipelines

Continuous pipelines do notmake use of a signal to indicatewhen their inputs are valid and instead,
they continuously process inputs. We can express such pipelines in Filament using phantom events

(Section 3.6). Phantom events do not have a corresponding interface port and therefore cannot be
used to trigger invocations. Filament ensures that a phantom event is used correctly through its
phantom check analysis which ensures:

Definition 5.1 (Phantom Check). A phantom event� is used correctly if:

(1) It is not used to share any instances.
(2) It is only used to invoke subcomponents that use phantom events.

First, resource sharing is disallowed because any pipeline that shares an instance must use some
signal to trigger an internal FSM and track which use of the instance is currently active. Second, a
phantom event is only available at the type-level and cannot be reified since there is no interface
port. Therefore, only components that use phantom events can be invoked with a phantom event.

Filament defines two state primitives: a register and a delay component.

comp Register<G: L-(G+1), L: 1>(

@interface[G] en: 1, @[G, G+1] in: 32

) -> (@[G+1, L] out: 32) where L > G+1;

comp Delay<G: 1>(

@[G, G+1] in: 32

) -> (@[G+1, G+2] out: 32);

As the type signatures denote, the difference is that a register can hold onto a value for an
arbitrary amount of time while a delay can only hold onto a value for a single cycle. The Delay
component accepts inputs every cycle and can therefore provide the output for one cycle. In
contrast, the register can use the en signal to hold onto a value for an arbitrary amount of time.

Compilation. The compiler does not instantiate FSMs or synthesize guards for invocations trig-
gered using phantom events. Since Phantom Check ensures that all subcomponents themselves do
not have an interface port, the compiler does not have to generate assignments for them. Filament
generated code for continuous pipelines matches expert-written code.

6 FORMALIZATION

Figure 7a presents a simplified syntax for Filament: all components can be parameterized using
exactly one constraint and cannot specify any ordering constraints between events. Since Fila-
ment disallows any form of event interaction in user-level components, multi-event user-level
components are not fundamentally more expressive. Multi-event external components are more
expressive but not supported in our formalism. A Filament program (P) is a sequence of com-
ponents which define a signature and a body in terms of commands: composition, connection,
instantiation, and invocation.
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G ∈ E0AB C ∈ 4E4=CB ?, @ ∈ ?>ACB

" ::=

def � ⟨C : =⟩(?1 : c1, . . . , ? 9 : c 9 ){2}

2 ::= 21 • 22 | ?3 = ?B | G := new �

| G := invoke G ⟨) ⟩(?1, . . . , ? 9 )

) ::= C | ) + = c ::= [)1,)2]

g ::= ∀⟨C : =⟩(?1 : c1, . . . , ? 9 : c 9 )

(a) Abstract syntax

⟦2⟧ : L → L L : T → R ×W

⟦?3 = ?B⟧ (!) = map(_(',, ) . if?B ∈,

then ('{?B/?3 },, ) else (',, ), !)

⟦21 • 22⟧ (!) = ⟦21⟧ (!) ∪ ⟦22⟧ (!)

(b) Log-transformer semantics

Δ,Λ1, Γ ⊢ c1 ⊣ Λ
′
1, Γ1 Δ,Λ2, Γ ⊢ c2 ⊣ Λ

′
2, Γ2

Δ,Λ1 ∗ Λ2, Γ ⊢ c1 • c2 ⊣ Λ
′
1 ∗ Λ

′
2, Γ1 ∪ Γ2

(c) Composition judgement

Fig. 7. Formal semantics of Filament where command is defined as a log-transformer. Typing judgements

track the active timeline of an instance and ensure they are used in a disjoint manner.

6.1 Semantics

Figure 7b presents Filament’s semantics which is defined as functions over logs (L). A log maps
events (T ) to a set of ports that are read from (R) and a multiset of ports that are written to (W).
Intuitively, a log captures all the reads and writes performed during every cycle of a component’s
execution. We track the multiset of writes to capture conflicts—if there are multiple writes to the
same port in the same cycle, then the program has a resource conflict.

Concrete logs are generated by the semantics of component definitions while commands simply
transform them. For example, a port connection forwards the value from the source port ?B to the
destination port ?3 . We model this by substituting all occurrences of ?3 to ?B in the read set R
when ?B is defined in the write-set W and mapping it over all defined events in the log. Com-
position reflects the parallel nature of hardware—it simply unions the two logs together. Write
conflicts can appear due to composition. The semantics of a program is the log generated by ex-
ecuting a distinguished main component with the empty log.3 We formalize the well-formedness
(Section 4.2) and safe pipelining (Section 4.4) constraints of the type system using this semantics.

Definition 6.1 (Well-Formedness). A component " is well-formed if and only if its log is well-
formed. A log ! is well-formed if and only if, for each event:

• There are no conflicting writes:,B =, where,B is the deduplicated set of writes.
• Reads are a subset of writes: ' ⊆,B

Definition 6.2 (Safe Pipelining). If a component" has an event) with delay 3 , and ⟦"⟧� repre-
sents its log where) is replaced with the event� , then" is safely pipelined if and only if all logs
!= are well-formed: != = ∀= ≥ 3 ⟦"⟧) ∪ ⟦"⟧)+=

6.2 Type System

Filament implements a type system inspired by separation logic [Reynolds 2002] to enforce the
well-formedness and safe pipelining constraints. Our presentation focuses on the specific typing
judgement that ensures that there are no conflicting uses of an instance. Our accompanying techni-
cal report [Nigam et al. 2023b] provides the full type system. At a high level, our typing judgement
for composition (Figure 7c) mirrors the parallel composition rule used in concurrent separation
logic [Brookes 2004]—the two commands are checked under two disjoint resource contexts. Our
insight is adapting the definition of separating split to timelines of instances and ensuring that

3The full semantics is provided in the technical report [Nigam et al. 2023b].
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instance reuse does not conflict. The typing judgements have the form: Δ;Λ; Γ ⊢ 2 ⊣ Λ′; Γ′. Γ is the
standard type environment, Δ tracks each event’s delay, and Λ is the resource context.

Resource contexts and separating split. Λ is the resource context and tracks the availability of
each instance and port in the form of an interval (c ). After instantiation, each instance is available
in the interval [0,∞). The invocation rule (not shown) checks that, for an instance’s event with a
delay 3 , the instance is available in the interval [�,� + 3) where � is the scheduling event. The
composition rule (Figure 7c) splits the resource context before checking the two commands:

Λ = Λ1 ∗ Λ2 iff∀(G : c) ∈ Λ ⇒ ∃c1, c2 .(G : c1) ∈ Λ1 ∧ (G : c2) ∈ Λ2 ∧ c1 ∩ c2 = ∅ ∧ c1 ∪ c2 = c

A valid split is one where the resulting contexts have disjoint intervals for each instance and
the union of the intervals is the original interval. By using this definition of split, Filament ensures
that invocations reuse instances in a non-conflicting manner. Our accompanying technical report
presents the remaining type judgements that encode constraints to enforce well-formedness and
safe pipelining and proves the following type soundness theorem [Nigam et al. 2023b]:

TheoRem 6.3. If Δ;Λ; Γ ⊢ 2 ⊣ Λ′; Γ′ then ⟦2⟧ is well-formed (Definition 6.1).

7 EVALUATION

We evaluate Filament’s ability to efficiently express a number of accelerator designs and to express
the interfaces generated by state-of-the-art accelerator generators. Our evaluation answers the
following questions:

(1) Can Filament express the interfaces generated by state-of-the-art accelerator generators and
integrate with existing tools?

(2) Can Filament be used to generate efficient accelerators?

Implementation. TheFilament compiler is implemented using a pass-based compiler in 5426 lines
of Rust, 341 lines of Verilog for the standard library primitives, and the latest version of the Calyx
compiler [Nigam et al. 2021] to generate Verilog. All benchmarks compile in under a second.

7.1 Expressivity Evaluation

To demonstrate the expressivity of Filament, we focus on giving type signatures to designs gener-
ated by Aetherling [Durst et al. 2020].

0 1 2

TSeq 3 0 (TSeq 1 1 int)

Aetherling’s space-time types. Aetherling [Durst et al. 2020]
is a functional, dataflow DSL that generates statically-scheduled,
streaming accelerators for image processing tasks. Aetherling’s
“space-time” types enable users to express the shape of the data stream as a sequence of valid
and invalid signals. For example, the type TSeq 1 1 denotes that there will be a stream with one
valid element followed by one invalid element. Nesting these types allows users to express more
complex shapes: TSeq 3 0 (TSeq 1 1) denotes that there will be three valid elements, with no
invalid values, each of which has a shape described by TSeq 1 1. In our case study, we import
14 designs implementing two kernels: conv2d and sharpen. Aetherling’s evaluation studies 7 de-
sign points for each kernel with different resource-throughput trade-offs. Filament can express the
interface types for all designs and, in the process, finds several bugs in the generated interfaces.

Cycle accurate harness. We implemented a generic, cycle-accurate harness to test Filament pro-
grams. At a high-level it:

(1) Provides the inputs for exactly the cycles specified in a component’s interface.
(2) Pipelines the execution of the component using event delays.
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Table 1. Latencies of Aetherling Designs. Highlighted latencies are reported incorrectly by Aetherling.

(a) Reported latencies for conv2d

Throughput Reported Actual

16 7 7
8 6 6
4 6 6
2 6 6
1 7 7
1/3 10 12
1/9 16 21

(b) Reported latencies for sharpen

Throughput Reported Actual

16 7 7
8 7 7
4 7 7
2 7 7
1 8 8
1/3 11 13
1/9 17 20

(3) Captures the value of output ports in the intervals provided in the signature.

The harness extracts the availability intervals and the event delays using a simple command-line
flag provided to the compiler and executes the design using the cocotb Python library [Cocotb
Authors 2023]. The design of this generic harness is reliant on a Filament-like system to document
the timing behavior of modules; without Filament, a user would have to manually extract this
information from the Verilog code.

Methodology. We compile each Aetherling design to Verilog and use Aetherling’s command line
interface to extract the design’s latency information. Each benchmark has five fully-utilized de-
signs, which can accept new inputs every cycle, and two underutilized designs which produce 1/3
and 1/9 pixels per clock cycle and accept new inputs every 3 and 9 cycles. We give each design
a type signature and validate its outputs. For designs with mismatched outputs, we change the
latency till we get the right answer.

Latency. Table 1 reports the latencies as provided by Aetherling’s command line interface and
those that we found to generate correct outputs with Filament’s cycle accurate test harness. Of
the 14 designs, Aetherling reports incorrect latencies for 5 designs.

Underutilized designs. Aetherling explores the utility of underutilized designs which produce
less than one pixel per clock cycle. Aetherling’s compiler optimizes such designs by sharing com-
pute resources. An Aetherling design that produces 1/9 pixels per clock has the type TSeq 1 8

uint8 which states that there will be 1 valid datum followed by 8 invalid ones. The type indicates
that the design generated by Aetherling should only use its input in the first cycle since the data
provided in the next cycles is invalid. However, this interface is incorrect.

comp Conv2d<G: 9>(

@[G, G+6] I: 8,

) -> (@[G+21, G+22] O: 8);

TSeq 1 8 uint8

@[G, G+6]

The Filament type, which reflects the actual interface needed to correctly execute the module,
requires the design to hold its input signal for six cycles, i.e., the data element must be valid for six
cycles instead of just one; the Aetherling implementation breaks its own interface. The Aetherling
test harness does not catch this bug because it always asserts all inputs for 9 cycles. In contrast,
Filament’s test harness only asserts the input signal for as long as the corresponding availability
interval specifies. Finally, the delay for the phantom event � encodes the fact the design can pro-
cess a new input every 9 cycles. This illustrates the subtlety of specifying time-sensitive interfaces
which accurately describe signal availability and pipelining.
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(a) Line buffer in the Stencil com-

ponent

× ×

+

(b) Base design uses pipelined

3-cycle multiplier

DSP48E2

DSP48E2

DSP48E2

(c) Reticle-based design uses

DSP cascade

Fig. 8. Components used in the design of Filament-based conv2d convolution. The stencil component pro-

vides the last three inputs and is either connected to the naive multiplier or a Reticle-generated DSP cascade.

Other designs. We also import designs generated from PipelineC [Kemmerer 2022], an open-
source high-level synthesis compiler that transforms a C-like language into Verilog [Nigam et al.
2023b]. Providing type signatures for these was straightforward since PipelineC always fully
pipelines designs and prints out the design’s latency on the command line.

7.2 Accelerator Design with Filament

We study Filament’s efficacy in generating efficient designs and reusing components generated
from other languages by implementing a two-dimensional convolution in Filament. We build two
Filament-based designs and compare them to the Aetherling-generated conv design.

Architecture. Our implementation is directly inspired by the structure of the Aetherling imple-
mentation of conv2d that outputs 1 pixel per clock cycle. The design uses a 3× 3 filter over a 4× 4

matrix. The Stencil module (Figure 8a) implements a line buffer to save the last 11 values and
outputs 9 values corresponding to the filter start index. The Conv2d kernel takes 9 values as inputs
and produces an output corresponding to the result of the convolution.

comp Prev[SAFE]<G: 1>(

@interface[G] en: 1,

@[G, G+1] in: 32,

) -> (@[G, G+1] out: 32);

Stream primitives in Filament. To implement line buffers, we im-
plement a new Prev component which outputs the last value stored
in it.4 The Verilog implementation of Prev is simply a register but
Filament gives it a different type signature—it allows access to the
output in the same cycle when the input is provided which corresponds to reading the previous
value in the register. The component uses a compile-time parameter SAFE to indicate whether the
first read produces an undefined value. We also define a ContPrev component which is similar to
a Prev component but uses a phantom event and can therefore be used in continuous pipelines
(Section 5.4). The stencil component (Figure 8a) is implemented as a sequence of Prev components.

Design 1: Pipelined multipliers. The base Conv2D kernel uses fully pipelined multipliers with a
three cycle latency and combinational adders. The multipliers do not have any associated Verilog
implementation—they are implemented using Xilinx’s LogiCORE multiplier generator [AMD Inc.
2022]. However, Filament makes it easy to interface with them by providing a type-safe extern
wrapper (Section 3.6).

4prev is a common operator in dataflow and functional reactive languages.
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comp Tdot<G: 1>(

clk: 1, reset: 1,

@[G, G+1] a0: 8,

@[G, G+1] b0: 8,

@[G+1, G+2] a1: 8,

@[G+1, G+2] b1: 8,

@[G+2, G+3] a2: 8,

@[G+2, G+3] b2: 8,

@[G+2, G+3] c: 8,

) -> (@[G+5, G+6] y: 8)

Design 2: Integrating with Reticle. Our second design uses a dot-
product unit generated using Reticle [Vega et al. 2021], a low-level lan-
guage for programming FPGAs. Figure 8c shows the architecture Ret-
icle generates to make use of DSP cascading which efficiently utilizes
resources present on an FPGA. DSP cascading explicitly instantiates
low-level FPGA primitives and connects them together to implement
the computation:~ = 2+Σ3

8=008 ×18 . Unlike standard compilation flows
which rely on the synthesis tool to infer DSP usage from behavioral

descriptions, Reticle generates structural descriptions that predictably
map onto DSPs. We provide a type signature for the Reticle design which indicates that the in-
puts must be provided in a staggered manner. Note that this is not implementation details leaking
through—a DSP cascade that starts a new computation every cycle needs to either register all its
inputs or provide them in a staggered manner.

Evaluation methodology. We validate the correctness of all the designs using our timing-
accurate test harness and compare the area and latency of the designs. For each design, we increase
the target frequency till we reach worst negative slack of less than 0.1=B and synthesize them using
Vivado v2020.2. Each design has a throughput of 1 pixel per clock cycle.

Table 2. Resource usage and maximum frequency of conv2d designs.

Best values highlighted.

Name LUTs DSPs Registers Freq. (MHz)

Aetherling 104 10 78 769.2
Filament 128 9 11 833.3
Filament Reticle 14 9 20 645.1

Summary. Table 2 shows the re-
sults of the comparison: the Fila-
ment design can be synthesized
at a higher frequency and uses
fewer resources than the Aether-
ling design. This is because Fila-
ment can safely and directly use
low-level implementation mod-
ules which can be directly compiled into a safe and efficient design. In contrast, the Aetherling
compiler has to generate extra logic when bridging the gap between its high-level language and
low-level circuits. The Reticle-based design uses an order of magnitude fewer logic resources than
the base Filament design or the Aetherling design.This is because unlike Aetherling, Reticle gener-
ates low-level structural Verilog which can predictably map onto DSP resources.This demonstrates
the utility of Filament as both an integration and design language—designs in Filament can use low-
level hardware modules safely and compose complex modules generated from other languages. It
also reveals another use case for Filament: instead of directly generating Verilog, Aetherling-like
languages can generate Filament programs and enable performance engineers to optimize the de-
signs further and remove abstraction overheads.

Other designs. Our technical report details other designs implemented in Filament [Nigam et al.
2023b]: (1) floating-point computations, and (2) matrix-multiply systolic array [Kung 1982].

8 RELATEDWORK

Reasoning about timing behavior. HIR [Majumder and Bondhugula 2021], an intermediate lan-
guage (IL) for HLS, and Spade [Skarman and Gustafsson 2023], a modern HDL, share Filament’s
goal of reasoning about static timing behavior. HIR uses time variables to reason about particular
points in time while Spade uses an explicit register construct to express signal delay. These mech-
anisms statically enforce well-formedness properties that are related to Filament’s: they prevent
reads from undefined signals and rule out imbalanced pipelines.
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Filament’s primary contribution is a type system that enables compositional reasoning for
pipelines with arbitrary initiation intervals, availability intervals, and resource sharing. Unlike
HIR or Spade, which need to “build in” special reasoning for basic circuit elements like registers,
Filament’s type system can express their behavior with ordinary type signatures within the lan-
guage. Filament’s timeline types also rule out all resource conflicts due to sharing or pipelining,
whereas HIR makes them undefined behavior and Spade makes them inexpressible.

Filament and HIR both generate control logic to implement a high-level schedule specification.
HIR, unlike Filament, supports control-flow constructs like loops and conditionals and must gen-
erate FSMs to implement them. On the other hand, Filament’s FSM generation must handle signal
availability intervals, which generalize HIR’s single-cycle time variables, and avoid overhead for
phantom events (Section 5.2).

Dataflow languages. Reactive dataflow programming languages [Boussinot andDe Simone 1991;
Caspi et al. 2008; Halbwachs et al. 1991] provide stream operators scheduled using logical time
steps. Software dataflow languages [Ragan-Kelley et al. 2013; Thies et al. 2002] provide high-level,
declarative operations that can target multiple backends like CPUs and GPUs. Compiling these
languages to hardware requires complex transformations [Berry 1992; Pu et al. 2017]. Filament is
lower-level and easier to compile since it directly reasons about hardware modules and is appro-
priate as a target language for hardware generators for these languages.

Accelerator design languages. Accelerator design languages [AMD Inc. 2021; Cong and Wang
2018; Durst et al. 2020; Hegarty et al. 2014, 2016; Koeplinger et al. 2018] provide high-level abstrac-
tions to design hardware accelerators. Filament is a low-level HDL that provides a type system to
directly interface with hardware modules and is appropriate both as an integration language and
as a target language for compilers for ADLs.

Embedded HDLs. Embedded HDLs [Baaij et al. 2010; Bachrach et al. 2012; Bjesse et al. 1998; Clow
et al. 2017; Jane Street 2022; Lockhart et al. 2014] use software host languages for metaprogram-
ming. Most eHDLs simply use the host language’s type system to ensure simple properties like
port widthmatch and signedness. Filament’s type system focuses on expressing structural and tem-
poral properties of the hardware itself. Rule-based HDLs [Bourgeat et al. 2020; Nikhil 2004] use
guarded atomic actions to provide transactional semantics for hardware specification. To preserve
their high-level semantics, the compiler must generate complex scheduling logic that dynamically
aborts conflicting rules. In contrast, Filament specifies program schedules using invocations which
are checked at compile time and predictably map to efficient, pipelined hardware.

Timing specifications. IP-XACT [IP-XACTWorking Group 2023] is an XML-based interface defi-
nition language that is used to package up coarse-grained, DMA-based interfaces. Filament, in con-
trast, specifies the low-level timing behavior of hardware modules. Synopsys Design Constraints
(SDC) [Synopsys Inc. 2023] are commonly used to configure the mapping of RTL programs to a
physical implementation. While SDC can be used to specify physical timing constraints such as
clock period and delays for combinational paths, these properties correspond to the physical im-
plementation of a circuit instead of temporal behavior of a module. Furthermore, both solutions
focus on specification alone. In contrast, Filament can both specify and check timing behaviors.

Type systems for Hardware Design. Dahlia [Nigam et al. 2020] is a C-like language that uses a
substructural type system to ensure that high-level programs do not violate hardware constraints.
Dahlia’s affine reasoning can be encoded in Filament’s type system. Kami [Choi et al. 2017] is
a proof-assisted framework for designing hardware. Kami can be used to prove full functional
correctness of hardware modules but requires users to write proofs while Filament’s type system
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is focused on timing properties and is automatic. Pi-Ware [Pizani Flor et al. 2014] uses dependent
types to ensure low-level circuit properties such as ensuring all ports are connected, and wire
sorts [Christensen et al. 2021] check whether module composition can create combinational loops,
both of which are orthogonal to Filament’s guarantees.

Session types. Cordial [de Muijnck-Hughes and Vanderbauwhede 2019] is a type system in-
spired by session types to reason about latency-insensitive hardware protocols while Ghica [2009]
presents game-semantics-insipired type system tomodel interfaces; both tools do not reason about
pipelining. Das et al. [2018] extend session types with temporal modalities from linear temporal
logic, enabling it to express time-synchronous properties. While their logic can be used to ex-
press Filament’s well-formedness property, it is not obvious how to encode the safe pipelining
constraints since they reason about all possible conflicting pipelined executions.

Model checking. Model checking [Clarke 1997] is a popular technique to verify hardware designs.
SystemVerilog Assertions [Vijayaraghavan and Ramanathan 2005] provide a linear temporal logic
(LTL) based specification language to verify properties of hardware designs [Cadence Inc. 2022;
Mattarei et al. 2018]. Such systems provide whole program guarantees and can prove more gen-
eral timing properties than Filament. Filament focuses on providing compositional guarantees and
interface specifications. Filament signatures can be potentially compiled to LTL specification and
checked by the aforementioned tools.

9 FUTURE WORK

Filament represents a new class of type systems that can reason about structural and temporal
properties of hardware designs. Using the foundational characterization of pipelining constraints,
future work on Filament can explore the addition of pipelines with data-dependent timing behav-
ior, parametric or generative hardware design, and an end-to-end type preserving compilation
flow for HLS tools.

10 CONCLUSION

Unlocking the true potential of reusable hardware requires detailed understanding of the structure
and timing of the implementation. Filament exposes this knowledge through interfaces and enables
users to reuse designs and fearlessly build high-performance hardware.
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