Choice Set Optimization Under Discrete Choice Models of Group Decisions

Kiran Tomlinson and Austin R. Benson

Department of Computer Science, Cornell University

ICML 2020

Discrete choice models

Goal

Model human choices

Discrete choice models

Goal

Model human choices
Given a set of items, produce probability distribution

Discrete choice models

Goal

Model human choices
Given a set of items, produce probability distribution

Multinomial logit (MNL) model (McFadden, 1974)
Choice set

Discrete choice models

Goal

Model human choices
Given a set of items, produce probability distribution

Multinomial logit (MNL) model (McFadden, 1974)
Choice set
Utility

Discrete choice models

Goal

Model human choices
Given a set of items, produce probability distribution

Multinomial logit (MNL) model (McFadden, 1974)

Choice set
Utility

3

2

1

1
\downarrow softmax
Choice prob.
0.18
0.50
0.18
0.07
0.07

$$
\operatorname{Pr}(\text { choose } x \text { from choice set } C)=\frac{\exp \left(u_{x}\right)}{\sum_{y \in C} \exp \left(u_{y}\right)}
$$

The choice set influences preferences
e.g., preference for red fruit:
choice set 1

choice set 2

e.g., preference for red fruit:
choice set 1

choice set 2

Not expressible with MNL

The choice set influences preferences

e.g., preference for red fruit:
choice set 1

choice set 2

Not expressible with MNL

Context effects are common
(Huber et al., 1982; Simonson \& Tversky, 1992; Shafir et al., 1993; Trueblood et al., 2013)

Choice Set Optimization Under
Discrete Choice Models of Group Decisions

Title breakdown

Choice Set Optimization Under Discrete Choice Models of Group Decisions
choice set

Title breakdown

Choice Set Optimization Under Discrete Choice Models of Group Decisions

choice set

adults

children

Title breakdown

Choice Set Optimization Under Discrete Choice Models of Group Decisions

choice set

child

Title breakdown

Choice Set Optimization Under Discrete Choice Models of Group Decisions

choice set

Title breakdown

Choice Set Optimization Under

 Discrete Choice Models of Group Decisionschoice set

Title breakdown

Choice Set Optimization Under

 Discrete Choice Models of Group Decisionschoice set

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)
3 Promoting an item is NP-hard with context effects

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)
3 Promoting an item is NP-hard with context effects
4 Restrictions can make promotion easy but leave agreement hard

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)
3 Promoting an item is NP-hard with context effects
4 Restrictions can make promotion easy but leave agreement hard
5 Poly-time ε-additive approximation for small groups

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)
3 Promoting an item is NP-hard with context effects
4 Restrictions can make promotion easy but leave agreement hard
5 Poly-time ε-additive approximation for small groups
6 Fast MIBLP for MNL agreement in larger groups

Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by introducing new alternatives?

1 Objectives: optimize agreement, promote an item Choice models: MNL, context effect models (NL, CDM, EBA)
2 Optimizing agreement is NP-hard in all models (two people!)
3 Promoting an item is NP-hard with context effects
4 Restrictions can make promotion easy but leave agreement hard
5 Poly-time ε-additive approximation for small groups
6 Fast MIBLP for MNL agreement in larger groups*

[^0]
Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)
■ Context-dependent random utility model (CDM) (Seshadri et al., 2019)
■ Elimination-by-aspects (EBA) (Tversky, 1972)

Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)

- Context-dependent random utility model (CDM) (Seshadri et al., 2019)
- Elimination-by-aspects (EBA) (Tversky, 1972)

Three models accounting for context effects

- Nested logit (NL) (McFadden, 1978)
- Context-dependent random utility model (CDM) (Seshadri et al., 2019)

$p_{x y}$	*)	\&89	0	\bigcirc	\bigcirc	
$\xrightarrow{*}$		0	-1	0	-1	softmax over
88	0		0	0	0	pull-adjusted utilities:
)	-1	0		0	-1	$u_{x}+\sum p_{z x}$
\bigcirc	0	0	0		0	$\sum_{z \in C}$
0	-1	0	-1	0		

- Elimination-by-aspects (EBA) (Tversky, 1972)

Three models accounting for context effects

- Nested logit (NL) (McFadden, 1978)
- Context-denendent random utility model (CDM) (Seshadri et al., 2019)

■ Elimination-by-aspects (EBA) (Tversky, 1972)

item	aspects
\{berry, red, sweet $\}$	
\{berry, purple, sweet $\}$	utility for each aspect
\{red, crunchy $\}$	repeatedly choose an aspect,
\{red, sweet $\}$	

Three models accounting for context effects

- Nested logit (NL) (McFadden, 1978)
- Context-dependent random utility model (CDM) (Seshadri et al., 2019)

■ Elimination-by-aspects (EBA) (Tversky, 1972)

item	aspects
\{berry, red, sweet $\}$	
\{berry, purple, sweet $\}$	utility for each aspect
\{red, crunchy	repeatedly choose an aspect, eliminate items without it
\{red, sweet $\}$	

Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)
■ Context-dependent random utility model (CDM) (Seshadri et al., 2019)
■ Elimination-by-aspects (EBA) (Tversky, 1972)

Notes

Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)
■ Context-dependent random utility model (CDM) (Seshadri et al., 2019)
■ Elimination-by-aspects (EBA) (Tversky, 1972)

Notes

1 NL, CDM, and EBA all subsume MNL

Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)
■ Context-dependent random utility model (CDM) (Seshadri et al., 2019)
■ Elimination-by-aspects (EBA) (Tversky, 1972)

Notes

1 NL, CDM, and EBA all subsume MNL
2 These are all random utility models (RUMs) (Block \& Marschak, 1960)

Three models accounting for context effects

■ Nested logit (NL) (McFadden, 1978)
■ Context-dependent random utility model (CDM) (Seshadri et al., 2019)
■ Elimination-by-aspects (EBA) (Tversky, 1972)

Notes

1 NL, CDM, and EBA all subsume MNL
2 These are all random utility models (RUMs) (Block \& Marschak, 1960)
3 Can learn utilities from choice data (SGD on NLL)

Outline

1 Overview

2 Agreement, Disagreement, and Promotion

3 Hardness Results

4 Approximation Algorithm

5 Experimental Results

Problem setup

- set of individuals making choices A

Problem setup

- set of individuals making choices A

■ universe of items \mathcal{U}

Problem setup

- set of individuals making choices A

■ universe of items \mathcal{U}
■ initial choice set $C \subseteq \mathcal{U}$

Problem setup

■ set of individuals making choices A
■ universe of items \mathcal{U}

- initial choice set $C \subseteq \mathcal{U}$
- possible new alternatives $\bar{C}=\mathcal{U} \backslash C$

Problem setup

- set of individuals making choices A

■ universe of items \mathcal{U}

- initial choice set $C \subseteq \mathcal{U}$
- possible new alternatives $\bar{C}=\mathcal{U} \backslash C$

■ set of alternatives $Z \subseteq \bar{C}$ we add to C

Problem setup

- set of individuals making choices A
- universe of items \mathcal{U}
- initial choice set $C \subseteq \mathcal{U}$
- possible new alternatives $\bar{C}=\mathcal{U} \backslash C$
- set of alternatives $Z \subseteq \bar{C}$ we add to C
- choice probabilities $\operatorname{Pr}(a \leftarrow x \mid C \cup Z)$ for each person a and item x

Problem setup

- set of individuals making choices A
- universe of items \mathcal{U}
- initial choice set $C \subseteq \mathcal{U}$
- possible new alternatives $\bar{C}=\mathcal{U} \backslash C$
- set of alternatives $Z \subseteq \bar{C}$ we add to C
- choice probabilities $\operatorname{Pr}(a \leftarrow x \mid C \cup Z)$ for each person a and item x

Choice set optimization

Find $Z \subseteq \bar{C}$ that optimizes some function of $\operatorname{Pr}(a \leftarrow x \mid C \cup Z)$

Three choice set optimization problems

Disagreement induced by Z

$$
D(Z)=\sum_{\substack{\{a, b\} \subseteq A \\ x \in C}}|\operatorname{Pr}(a \leftarrow x \mid C \cup Z)-\operatorname{Pr}(b \leftarrow x \mid C \cup Z)|
$$

Three choice set optimization problems

Disagreement induced by Z

$$
D(Z)=\sum_{\substack{\{a, b\} \subseteq \bar{C} \\ x \in C}}|\operatorname{Pr}(a \leftarrow x \mid C \cup Z)-\operatorname{Pr}(b \leftarrow x \mid C \cup Z)|
$$

Agreement

Find Z that minimizes $D(Z)$

Three choice set optimization problems

Disagreement induced by Z

$$
D(Z)=\sum_{\substack{\{a, b\} \subseteq A \\ x \in C}}|\operatorname{Pr}(a \leftarrow x \mid C \cup Z)-\operatorname{Pr}(b \leftarrow x \mid C \cup Z)|
$$

Agreement

Find Z that minimizes $D(Z)$

DisAgreement

Find Z that maximizes $D(Z)$

Three choice set optimization problems

Disagreement induced by Z

$$
D(Z)=\sum_{\substack{\{a, b\} \subseteq A \\ x \in C}}|\operatorname{Pr}(a \leftarrow x \mid C \cup Z)-\operatorname{Pr}(b \leftarrow x \mid C \cup Z)|
$$

Agreement

Find Z that minimizes $D(Z)$

DisAgreement

Find Z that maximizes $D(Z)$

Promotion

Find Z that maximizes number of people whose favorite item in C is x^{*}

Outline

1 Overview

2 Agreement, Disagreement, and Promotion

3 Hardness Results

4 Approximation Algorithm

5 Experimental Results

Making even two people agree (or disagree) is hard

Making even two people agree (or disagree) is hard

Theorem
 MNL Agreement is NP-hard, even when $|A|=2$ and the two individuals have identical utilities on items in \bar{C}.

Making even two people agree (or disagree) is hard

Theorem

MNL Agreement is NP-hard, even when $|A|=2$ and the two individuals have identical utilities on items in \bar{C}.

Theorem

MNL Disagreement is similarly NP-hard.

Making even two people agree (or disagree) is hard

Theorem

MNL Agreement is NP-hard, even when $|A|=2$ and the two individuals have identical utilities on items in \bar{C}.

Theorem

MNL Disagreement is similarly NP-hard.
Corollary
NL, CDM, and EBA Agreement/Disagreement are NP-hard.

Making even two people agree (or disagree) is hard

Theorem

MNL Agreement is NP-hard, even when $|A|=2$ and the two individuals have identical utilities on items in \bar{C}.

Theorem

MNL Disagreement is similarly NP-hard.

Corollary

NL, CDM, and EBA Agreement/Disagreement are NP-hard.

Subset Sum reductions

Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Theorem
Promotion is NP-hard under NL, CDM, and EBA.

Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Theorem

Promotion is NP-hard under NL, CDM, and EBA.

Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Theorem

Promotion is NP-hard under NL, CDM, and EBA.

Promotion is "easier" than Agreement
Model restrictions make Promotion easy, but leave Agreement hard.

Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Theorem

Promotion is NP-hard under NL, CDM, and EBA.

Promotion is "easier" than Agreement
Model restrictions make Promotion easy, but leave Agreement hard. e.g., same-tree NL

Outline

1 Overview

2 Agreement, Disagreement, and Promotion

3 Hardness Results

4 Approximation Algorithm

5 Experimental Results

Poly-time approximation for small group Agreement

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of $Z \mathrm{~s}$

Poly-time approximation for small group Agreement

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of $Z \mathrm{~s}$
\Rightarrow compute fewer sets than brute-force

Poly-time approximation for small group AGREEMENT

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of $Z \mathrm{~s}$
\Rightarrow compute fewer sets than brute-force

Theorem

We can ε-additively approximate MNL Agreement in time $O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon},|C|,|\bar{C}|\right)\right)$.

Poly-time approximation for small group Agreement

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of $Z \mathrm{~s}$
\Rightarrow compute fewer sets than brute-force

Theorem

We can ε-additively approximate MNL Agreement in time $O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon},|C|,|\bar{C}|\right)\right)$.

Poly-time approximation for small group Agreement

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of $Z \mathrm{~s}$
\Rightarrow compute fewer sets than brute-force

Theorem

We can ε-additively approximate MNL Agreement in time $O\left(\right.$ poly $\left.\left(\frac{1}{\varepsilon},|C|,|\bar{C}|\right)\right)$.

can be adapted for CDM, NL,
Disagreement, Promotion

Outline

1 Overview

2 Agreement, Disagreement, and Promotion

3 Hardness Results

4 Approximation Algorithm

5 Experimental Results

Datasets and training procedure

■ SFWork: survey of San Fransisco transportation choices Groups: live in city center, live in suburbs (Koppelman \& Bhat, 2006)

Datasets and training procedure

■ SFWork: survey of San Fransisco transportation choices Groups: live in city center, live in suburbs (Koppelman \& Bhat, 2006)
■ Allstate: online insurance policy shopping
Groups: homeowners, non-homeowners
(Kaggle, 2014)

Datasets and training procedure

■ SFWork: survey of San Fransisco transportation choices Groups: live in city center, live in suburbs
(Koppelman \& Bhat, 2006)
■ Allstate: online insurance policy shopping
Groups: homeowners, non-homeowners
(Kaggle, 2014)

- Yoochoose: online retail shopping Groups: first half, second half (by timestamp)
(Ben-Shimon et al., 2015)

Datasets and training procedure

■ SFWork: survey of San Fransisco transportation choices Groups: live in city center, live in suburbs
(Koppelman \& Bhat, 2006)

- Allstate: online insurance policy shopping

Groups: homeowners, non-homeowners
(Kaggle, 2014)

- Yoochoose: online retail shopping

Groups: first half, second half (by timestamp)
(Ben-Shimon et al., 2015)

Model training

Optimize NLL using PyTorch's Adam with amsgrad fix (Kingma \& Ba, 2015; Reddi et al., 2018; Paszke et al., 2019)

Greedy algorithm fails in small examples

SFWork CDM Agreement
 $C=\{$ drive alone, transit $\}$

Greedy algorithm fails in small examples

SFWork CDM Agreement
 $C=\{$ drive alone, transit $\}$

Greedy

$$
Z=\{\text { carpool }\}
$$

Greedy algorithm fails in small examples

SFWork CDM Agreement
 $$
C=\{\text { drive alone }, \text { transit }\}
$$

Greedy
 $Z=\{$ carpool $\}$

Optimal
$Z=\{$ bike, walk $\}$

Approximation outperforms greedy on 2-item choice sets

Allstate

Approximation outperforms greedy on 2-item choice sets

Yoochoose

Approximation outperforms theoretical guarantee

Allstate CDM Promotion on all 2-item choice sets

Approximation outperforms theoretical guarantee

Allstate CDM Promotion on all 2-item choice sets

Acknowledgment

This research was supported by NSF Award DMS-1830274, ARO Award W911NF19-1-0057, and ARO MURI. We thank Johan Ugander for helpful conversations.

Takeaways

1 Influence group preferences by modifying the choice set
2 NP-hard to maximize consensus or promote items
3 Promotion is easier than achieving consensus
4 Approximation algorithm that works well in practice

Availability

Data and source code hosted at https://github.com/ tomlinsonk/choice-set-opt.

[^0]: *See paper

