Higher-order homophily is combinatorially impossible

Austin Benson • Cornell University HONS@Networks 2021

Joint work with
Nate Veldt (Cornell \rightarrow Texas A\&M) \& Jon Kleinberg (Cornell)

People tend to connect to similar others.


```
age
race
gender
location
occupation
education level
political affiliation
religious affiliation
attitudes and aspirations
```

Birds of a feather: Homophily in social networks, McPherson, Smith-Lovin, \& Cook, 2001.
Mixing Patterns in Networks, Newman, 2003.

Homophily is used to understand groups.

The duality of persons and groups, Breiger, 1974.
Sex and race homogeneity in naturally occurring groups, Mayhew et al., 1995.
Testing a dynamic model of social composition, McPherson \& Rotolo, 1996.
Community-Affiliation Graph Model for Overlapping Network Community Detection, Yang \& Leskovec, 2012.

Even though homophily is used to understand groups, we measure it from pairwise interactions.

(5) in 1 BG, 2 BB edges (3 total)
(6) in $2 \mathrm{BG}, 2 \mathrm{BB}$ edges (4 total)
(7) in 2 BG, 2 BB edges (4 total)

$$
\begin{aligned}
& \mathrm{h}(\mathrm{~B})=(2+2+2) /(3+4+4)=6 / 11 \\
& \mathrm{~h}(\mathrm{G})=(2+3+3+2) /(2+5+4+4)=2 / 3
\end{aligned}
$$

affinity aka homophily index

The baseline is the probability that a uniformly chosen neighbor is the same class.
$b(B)=2 / 6<h(B) \rightarrow h(B) / b(B)>1 \rightarrow$ homophily $w / r / t$ to the blue class
$b(G)=3 / 6<h(G) \rightarrow h(G) / b(G)>1 \rightarrow$ homophily $w / r / t$ to the green class

We have lots of social data of group interactions.

Communications

Collaboration

her-order Homophily is Combinatorially Impossible

We propose a homophily metric from group interactions.

5 in 0 BGG, 1 BBG, 1 BBB, edges (2 total)
6 in 1 BGG, 1 BBG, 1 BBB edges (3 total)
(7) In 0 BGG, 2 BBG, 1 BBB edges (3 total)

$$
\begin{aligned}
& h_{1}(B)=(0+1+0) /(2+3+3)=1 / 8 \\
& h_{2}(B)=(1+1+2) /(2+3+3)=4 / 8 \\
& h_{3}(B)=(1+1+1) /(2+3+3)=3 / 8
\end{aligned}
$$

The t-baseline is the probability that there are t of a given class if other 2 are random.
$b_{1}(B)=(4$ choose 2$) /(6$ choose 2$)=2 / 5>h_{1}(B) \rightarrow h_{1}(B) / b_{1}(B)<1$
\rightarrow no type-1 homophily $w / r / t$ to the blue class
$b_{2}(B)=(2 \text { choose } 1)^{*}(4$ choose 1$) /(6$ choose 2$)=8 / 15>h_{2}(B) \rightarrow h_{2}(B) / b_{2}(B)<1$
\rightarrow no type-2 homophily $w / r / t$ to the blue class
$b_{3}(B)=1 /(6$ choose 2$)=1 / 15<h_{3}(B) \rightarrow h_{3}(B) / b_{3}(B)>1$
\rightarrow yes type 3 homophily $\mathrm{w} / \mathrm{r} / \mathrm{t}$ to the blue class

We propose a homophily metric from group interactions.

$\mathbf{h}_{1}(\mathrm{G})=0.2$	$\mathbf{h}_{2}(\mathrm{G})=0.2$	$\mathbf{h}_{3}(\mathrm{G})=0.6$
$\mathbf{b}_{1}(\mathrm{G})=0.2$	$\mathbf{b}_{2}(G)=0.6$	$\mathbf{b}_{3}(\mathrm{G})=0.2$
$\mathbf{h}_{1}(\mathrm{~B})=0.12$	$\mathbf{h}_{2}(\mathrm{~B})=0.5$	$\mathbf{h}_{3}(\mathrm{~B})=0.38$
$\mathbf{b}_{1}(\mathrm{~B})=0.4$	$\mathbf{b}_{2}(\mathrm{~B})=0.53$	$\mathbf{b}_{3}(\mathrm{~B})=0.07$

Affinities also have a statistical interpretation.

Hypergraph stochastic block model for size-k groups and classes B \& G

- $p_{\mathrm{t}}=$ prob. exactly t of class B in a hyperedge

- Type-t node degrees are asymptotically independent
- For an observed set of degrees, $h_{t}(B)$ is the MLE for p_{t}

Monophily in social networks introduces similarity among friends-of-friends Altenburger \& Ugander, 2018.

Women in computer science research: what is the bibliography data telling us?

Authors: 8 Swati Agarwal, 8 Nitish Mittal, 8 Rohan Katyal, 9 Ashish Sureka, 8 Denzil Correa Authors Info \& Affiliations

ACM SIGCAS Computers and Society, Volume 46, Issue 1 • oMarch 2016 • pp 7-
19 • https://doi.org/10.1145/2908216.2908218

74,134 papers in 81 CS conferences with 2,3 , or 4 authors each, covering 105,256 total authors, 21.5% of which are female

3-author papers

4-author papers

Women are more likely to be in majority-female collaborations than by chance. Men are only more likely than chance to be in all-male or $1 \mathrm{M}-3 \mathrm{~F}$ collaborations. Women and men cannot both prefer majority same-gender collaborations more than chance!

Women exhibit monotonically increasing preferences for more female authors. Men don't have this pattern. Women and men cannot both have monotonically increasing majority-gender preferences!

When two classes of people participate in groups of 3, they cannot both have higher than random preferences for all groups where they are in the majority.

This is not a social finding...
it is a combinatorial impossibility of hypergraphs!

242 students at a primary school with gatherings of students if they all made contact within 20 seconds as measured by wearable sensors

Our theory captures these ideas precisely.

In group interactions of size k, we say that class X exhibits

- majority homophily if $\mathrm{h}_{\mathrm{t}}(\mathrm{X})>\mathrm{b}_{\mathrm{t}}(\mathrm{X})$ for $t>k / 2$;
- monotonic homophily if $\mathrm{h}_{\mathrm{t}}(\mathrm{X}) / \mathrm{b}_{\mathrm{t}}(\mathrm{X})>\mathrm{h}_{\mathrm{t}-1}(\mathrm{X}) / \mathrm{b}_{\mathrm{t}-1}(\mathrm{X})$ for $t>k / 2$.
[these are the same if $k=2$]

Theorem [Veldt-Benson-Kleinberg 21]

- For k odd, both classes cannot simultaneously exhibit majority homophily or monotonic homophily.
- For k even, both classes cannot exhibit majority homophily if $h_{k / 2}(X) / b_{k / 2}(X)>h_{k / 2-1}(X) / b_{k / 2-1}(X)$ for at least on class X.
- For k even, both classes can exhibit majority homophily but need $h_{k / 2}(X)>b_{k / 2}(X)$ for at least one class X.
[these results also covers another homophily measure and many types of baselines]

Intuition. Majority groups for one class are minority groups for the other class.

A weak homophily impossibility result is easy to prove.

No class can have all affinities above baselines, i.e., there cannot be a class where $h_{t}(X)>b_{t}(X)$ for $t=1,2, \ldots, k$.

Proof. $h_{1}(X)+\ldots+h_{t}(X)=1=b_{1}(X)+\ldots+b_{t}(X)$.

5-person bills

10-person bills

15-person bills

1,718 congresspersons, 810 / 908 republican / democrat, co-sponsoring 883,105 bills
group size k

	$\mathbf{5}$	6	7	8	9	$\mathbf{1 0}$	11	12	13	14	$\mathbf{1 5}$	16	17	18	19	20
Rep. GHI	$\mathbf{2}$	2	2	3	3	$\mathbf{3}$	4	4	4	5	$\mathbf{5}$	5	6	7	7	6
Dem. GHI	$\mathbf{1}$	2	2	2	3	$\mathbf{3}$	3	4	4	4	$\mathbf{5}$	5	5	6	6	6

Group Homophily Index $(\mathrm{GHI})=$ number of top affinity scores above baseline

5-person bills

10-person bills

15-person bills

1,718 congresspersons, 810 / 908 republican / democrat, co-sponsoring 883,105 bills

More shopping trips highly focused on clothes or groceries than expected by chance.

More common to go on a clothing-focused trip and get a few groceries than a grocery-focused trip and get a couple of clothing items.

48,480 products purchased at Walmart

8,956 hotels reviewed by 128,494 users on tripadvisor.com

group size k												
	2	$\mathbf{3}$	4	5	$\mathbf{6}$	7	8	$\mathbf{9}$	10	11	12	13
N. America GHI	1	$\mathbf{1}$	1	1	$\mathbf{1}$	2	2	$\mathbf{2}$	3	3	3	4
Europe GHI	1	$\mathbf{1}$	1	1	$\mathbf{1}$	1	1	$\mathbf{2}$	3	3	3	3

$$
\begin{aligned}
& \operatorname{Pr}(2 \text { boys })=1 / 4 \\
& \operatorname{Pr}(2 \text { girl })=1 / 4 \\
& \operatorname{Pr}(1 \text { boy }, 1 \text { girl })=1 / 2
\end{aligned}
$$

"family portrait" query on Flickr
$\rightarrow 1,051$ images

3-person photos

Pairwise reduction graph homophily Male 0.43
Female 0.41

"wedding + bride + groom + portrait" query on Flickr $\rightarrow 662$ images

Pairwise reduction graph homophily Male 0.57
Female 0.54

2-person photos

"group shot" or "group photo" or "group portrait" query on Flickr $\rightarrow 963$ images

3-person photos

Pairwise reduction graph homophily Male 0.60
Female 0.58

There is lots of structure when analyzing higher-order interactions where nodes are in one of two classes.

1. Homophily is (in some sense) impossible for higher-order networks.
2. This is a combinatorial fact, so social insights need care.
3. (near-)homogeneous groups are often homophilous: physical contacts, political teams, co-reviews, certain photos
4. Reducing to pairwise destroys insights

THANKS! Austin Benson
http://cs.cornell.edu/~arb
y aaustinbenson
\square arbacs.cornell.edu

Higher-order homophily is combinatorially impossible. Nate Veldt, Austin R. Benson, and Jon Kleinberg. arXiv:2103.11818, 2021.

Code \& Data. github. com/nveldt/HypergraphHomophily

CHASE

