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Graph data modeling complex systems are everywhere.

N
Society " Finance
nodes are people nodes are accounts
edges are friendships V’SA edges are transactions
Brains amazZon Commerce

nodes are neurons nodes are products
edges are synapses E edges are copurchases



We often want to predict/estimate/construct/forecast
attributes/labels/outcomes/clusters on nodes.

Bad actors in financial transaction graphs
Weber+ 18, 19; Pareja+ 20]

 Gender in social networks

[Peel 17; Altenburger-Ugander 18]

» Document classification in citation networks
Lu-Getoor 03; Kipf-Welling 17]

* Product categories from coreview/copurchase
[Huang+ 20; Veldt+ 20]

* Election outcomes from social connections
Jia-Benson 21]

known labels/outcomes

« Might have rich additional info on nodes (features)
transaction history, user interests, document text, product ratings, demographics

» Graph-based semi-supervised learning, clustering, node prediction, relational
learning, collective classification, community detection, ...



The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y, of outcomes on U= V'\ L.



There are two broad classes of algorithms.
1. Label Propagation [early 2000s)

2. Graph Neural Networks [late 2010s]
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* Propagate/spread/diffuse known values. - Combine neighbor features via neural nets.
* Classification: once per label — scores. « Train with known target values.
* Regression: spread real values.

* Produces vector h, for each node v.
Key questions.

1. When should each work well or poorly?
2. How can we combine them?

3. What is the relationship between them?



There are two broad classes of algorithms.

1. Label Propagation [early 2000s)

» Strong modeling assumption:
connected nodes have similar labels.

* Works because of homophily [McPherson+ 01]
a.k.a. assortativity [Newman 02]

 Why not use additional info/features?

* FAST

a few sparse matrix-vector products

2. Graph Neural Networks [tate 2010s]
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* Strong modeling assumption:
labels only depend on neighbor features
» Works because these features are
sometimes very informative.
 Why not assume labels are correlated?
« SLOW

many parameters, irreqgular computation
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Graph neural networks make uncorrelated predictions.

O/@ feature  -1.0@ D +1.0 () training ' testing
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® representation h, at node v.
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Pervasive paradigm [Kipf-Welling 16; Hamilton+ 17; Zhou+ 18; ~10,000 papers in 5 years]
* Something strange? Given all h,, independent predictions.

* Use of the labels is very implicit.

* If node features are overwhelmingly predictive, this might be OK.



Uncorrelated GNN predictions can be catastrophic in
simple cases when features are only mildly predictive.
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 All we have done is change the label distribution!
* Big problem. Features are no longer super predictive.
* LP (ignoring features) would work much better.



We can correlate feature-based predictions by
propagating residual errors. [iia-Benson 20,21]
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Residual propagation works super well in practice.

\ learn
\ Gy — &

. ¢ interpolate

Out-of-sample R? 0.51 — 0.69.
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There is a simple statistical motivation for this o e
problem with graph neural networks. S em S

The objective is basically just ordinary least squares (OLS).
: : 2 _ T
min 26; o — g (s, {%y 1V € Ni(u)}, 0)]° = min ze; vy —hi(6)"B(O)]

* If observations are y, = BTh+ g, for i.i.d. g, ~ N(0, o?),
then the OLS solution is the MLE (also, Gauss-Markov theorem / BLUE).
* But we shouldn’t expect i.i.d. error in graph data!

* We are positing that errors are positively correlated along edges.
 Essentially, this is a type of generalized least squares [Aitken 36].
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|s there a common statistical

framework that unifies
LP and GNN ideas?

12



The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y, of outcomes on U= V'\ L.

Solution evaluation.
* Coefficient of determination R2=1 - RSS / TSS.
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Regression and classification.

* Most of the talk on theory and applications for regression.
Outcome variables like age, income, traffic flows, climate measurements.

 Later, extensions to classification.
Outcome variables like product or Web page categories / types.
(the theory is harder for classification, but we're working on it...)

14



We developed a random model for attributes on nodes,

where statistical inference leads to GNN/LP algorithms.
[Jia-Benson 21]

Data Type Corresponding Gaussian MRF Learning Algorithm
X11 X21 X31 e
condition on X : :
%xlz %m %m —— linear regression
y Y2 y; CoTesse Elyy|X] = XyB B = (XTX,)"1XT
i.i.d. data (X, y) 1 Yu v LRLY "RV
V2
.YZ diti '
Vi V3 TR Y  label propagation
e o Elyulyl= — (1 + wN);5(1 + wN)y y,
graph data (y, G)
%) X21
X22 iti ; further condition on y; : >
Vi V3 % yz Sonifomen ¥ linear GC » residual propagation

o {u %XN ElyulX] = [(1+ wN)"1XBly ElyulX, yi] =
X12 X32

graph R pne (X, Y, G) lchange filter
SGC (simple graph convolution)

l+nonlinearity

GCN (graph convolution network)
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Our model is based on smooth random attributes.

* Random real-valued attribute vectors a, = [x,; y,] on each node vu.
* A = jth attribute over all nodes.
« N=1-DY2WD1? is the normalized Laplacian.
* Gaussian MRF random attribute model
p+1 smoothness on attributes

P(AH, h) = = 2§aTHau5 S‘@ ATNA,) He RO gpd, 0 < h e R

correlateﬂ a]ttnbutes ona node = Z(U,v GE(A“'/ Vi, — Al \/d, )

e—PAIHA)
[ dA” e~ ¢ @ 1HA)

p(A=AlH,h) = Smoother attributes are more likely (homophily / assortativity)

vec(A) ~ N(0,T™Y), F=H® I,+diag(h) @ N lusta multivariate normal random variable in the end
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Now we can treat our graph learning problem as a
statistical inference problem.

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y, of outcomes on U= V'\ L.

Problem solution.

* yu=E[ yuy | input data ], under our model
 Different conditioning — different algorithms.
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Case 1. Linear regression when there are no edges.

(special case of standard theory of linear models)

1 122
G(AIH.h) = 5" alHa, + W,-
u=1 i=1

e~ 1 21 9 Hay ! e~ 29 Hau " | det(H)

p(A) dA/ e~ 1 ZU lauTHa’ = H da’ e_%aZITHa/ = H (27T)q+1
f u=1 f

ETyalX = X] = Elya|x, = X,] = xJ@mp+1/Hp+@= XI

rather than infer directly, estimate with OLS
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Case 2. Label propagation when conditioning on
observed labels, assuming no features.

One attribute, so these are just positive scalars
vec(A) ~ N(0,T™Y), T=H®I,+diaglh)oN

control noise, 1/H is variance if no edges

Y~ MO T {HL) )

control smoothness

Elyyly, =yl = —rljul Fuyr = —(HI, + AN); (HI, + hN) gLy,
= —(In+ wN)gy (In+ @N)y yi, @ =h/H
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Case 2. Label propagation when conditioning on

observed labels, assuming no features. Joey

Elyyly, =yi]=— (I, + wN)ljJ (I, + wN),, yi is the limit of label propagation.

.\ 1 1 .
VueU, vy (L—a) v v dy T Y ey W VUEL vty

Yu e U, yf,o) = 0; Vu e L, )/fzo) = Yu
a = @1+ = h/H/1+en/H € (0, 1)

* h 7 — smoothness” — w/” — o/ — more weight on neighbors
* hN — smoothnessN — wN — aN — less weight on neighbors
« H” — noiseN — w\N — aN — less weight on neighbors

* HN — noise” — w/” — o/ — more weight on neighbors

* Rather than infer directly, estimate o with cross validation
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Case 3. Linear graph convolutions when

conditioning on features. Naare
\
linear
control noise |nverse varlance averaging

yIX= XNN(erP - .V

control smoothness

y E[Y|X X] ( p+1p+1I +hp+1N) ( H]Tp,p+1®In)vec(X)

(1, + Ny Rp .

) _ Yv eV, xv
LP on features! (just no known, fixed values)

Vv eV, xv = X,

Linear graph convolution (LGC).
1. Run LP on each feature — smoothed features.
2. OLS on these preprocessed, smoothed features.

0 _1
)<—(1—O’)'X$/)+a'dv ’ ZWEM(V)dW

linear
averaging A
e
‘4—.3:::11 .......
linear . @
averagmg .
o<y
- 2
linear
averaging
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Case 3. Linear graph convolutions when
conditioning on features.

Linear Graph Convolution (LGC) (1 —a) (I +aS+a’S*+..)XB S=D ‘WD '/*
[Jia-Benson 21]

Simplified Graph Convolution (SGC) S“Xj S=D+I)"Y2W+I)D+I)"1?
[Wu+ 19]

Graph Convolution Network (GCN) (S ...c(SXOY)...0%)a
[Kipf-Welling 17]

 «is continuous,while K is discrete.

« SGCas K— o is nonsensical.

* Does nonlinearity help?

« Does extra parameterization of each “propagation step” in GCN help?
* No conditioning on label distribution!

22



We should condition on
features and labels in our model.

And GNN predictions should not be
conditionally independent!

23



Case 4. Residual propagation when conditioning
on both features and observed labels.

y=(I,+wN)"1XB LP on residual errors!

ElyylX = X,y, = yi] = 9 (I + 0N+ oN)u G — 0

Linear graph convolution with residual propagation (LGC/RP).

1.

Run LP on each feature — smoothed features.

2. OLS on these smoothed features — initial predictions.
3.
4. Add smoothed errors to initial predictions.

Run LP on residual errors — smoothed errors.

)

Can substitute in any
initial prediction.

24



Dataset Outcome LP LR LGC () SGC (K GCN (K)  LGC/RP  SGC/RP  GCN/RP
income 040 0.63 0.66 (0.46) 0.55(1.3) 0.69 0.55 0.55
UsS education 0.31 0.71 0.71 (0.00) 047 (1.0) 0.71 0.46 0.48
" unemployment 0.47 0.34 0.39 (0.59) 0.45 (2.5 0.54 0.52 0.53
election 0.52 042 0.49 (0.68) 0.52(2.1) 0.64 0.61 0.61
airT 095 0.85 0.86(0.78) 0.95 (3.00 0.96 0.97 0.97
cDC landT 0.89 0.81 0.81(0.09) 09124 0.90 0.93 0.93
precipitation 0.89 0.59 0.61 (0.93) 0.79 3.00 0.89 0.90 0.90
sunlight 096 0.75 0.81(0.97) 0.90 (3.00 0.96 0.97 0.97
pm2.5 096 0.21 0.27 (0.99) 0.78 (3.0) 0.96 0.96 0.97
income 046 0.85 0.85 (0.00) 0.63(1.0) 0.85 0.65 0.64
London education 0.65 0.81 0.83(0.40) 0.79(14) 0.86 0.77 0.79
age 0.65 0.73 0.73(0.17) 0.70 1.7y  0.75 0.72 0.72
election 0.67 0.73 0.81(0.74) 0.76 (2.1) 0.85 0.78 0.78
Twitch  days 0.08 0.58 0.59(0.67) 0.26 1.7)  0.60 0.23 0.26
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We can examine regression coefficients with LGC.

year shO50m sh100m sh500m income migration birth death education unemployment

2012 0.06 -0.42 0.24 0.22 0.16 -0.13  0.04 -0.90 -0.38
2016 -0.02 -0.38 0.22 0.70 0.21 -0.13  0.51 -1.53 -0.39

Outcome = republican vote share - 0.5
Zero mean / unit variance feature normalization

* Higher income and lower education levels — right-leaning
* |Income and education level stronger indicators in 2016.
* Positive sh500m coefficient from rural, right-leading counties?

26



We can also evaluate on our generative model.

ho LP(@) LR LGC(a) SGC(K) GCN(K) LGC/RP(a) SGC/RP(K,a) GCN/RP (K,a)

Low homophily. 1 0.19 079 0.68 070028 0.37 @18 034@w7n 0.73029 0.40@s o021 0.37 (17,021
10 0.43 (95 048 0.58 (0577 045021 045020 0.68 056 056 (2.1,046) 0.54 (2.0,0.43)
High homophily. 100 0.59 (0999 0.24 0.42 (085 0.38 23 0.45 @5 0.64 085 0.63 23081 0.62 (25079

* GCN more expressive but prone to overfitting.

* More homophily — larger K, a

* Adding residual prop never hurts!

* GCN better with more homophily?
“memorizing” neighborhood features (zero training error)
+ smoothness in data — better out-of-sample prediction

27



Our model helps us understand smoothing.

A,=0.00
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discrete parameterization.
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continuous parameterization.

—

os Graph Signal Processing:
Overview, Challenges and
Applications, Ortega et al.,
o Proc.IEEE, 2018.

-0.5

Encouraging
smoothness.
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Our model helps us understand smoothing.

LGC SGC
1.00 | —_— w=10720 K=0 K=0
—_— W= 10—1.0 : — K=1
0.75 | w=10%00 <—low-pass, — K=2
W= 10+1.O —— K=5
- — W= 10+2.0 K=10
< 0.50 w=10%30 — K =20
(@)
0.25
0.00
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
A A
n n n n
1 K
f= E Civi — E CiVi f= E Civi — E (1 — 9@+nA)" v
: — (1 +wA)) : :
i=1 i=1 i=1 i=1
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Our model helps us understand smoothing.

102

“Oversmoothing”=

Empirically discussed
problem with GNNs.
[Li+ 18; Oono-Suzuki 20;
Zhou-Akoglu 20]

-
(&)
—

LGC/RP w
)

1071

CV can identify the
model parameter.

Undersmoothing?

Possible but not
discussed in the

10-1 160 101 102 “terature.

Gaussian MRF w
T e — T Test R2,

0.16 0.88
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Our model provides a nice setup for inductive learning.

Problem input.

* Graphs G, = (V,E1) and G, = (V>, E)).

* |Vi| x p matrix X; and |V;| x p matrix X, of node features (same features)
» Subset L, c V of labeled nodes.

* Length-|L,| vector YL, of outcomes on L;.

Problem output.
* Length-| V, | vector y of outcomes on nodes V.
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accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0

0.8

o
o

=
>

o
)

0.0

Predictive features,
low homophily.

High homophily.

I

ho=1 ® transductive ho =10 ho =100
@® inductive
0.70 0.70
0.6.8 g68 o0
0.58 0.57
o
0.48 0.47
0.45 o. 0.45 0.45
e [} 344 ® o0.40 Dg2 [ -
0.37 0.36 o @ s
® 0.34 .33 0.34 &
e ® 0.28
0.24 ®
o
0.14
0.08 ®
@
LR GC GC  GCN LR EGE SGC  GCN LR LGC 8GE GEN
A bit of degradation.

No performance
degradation.

Bad
overfitting!
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accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0

0.8

0.6

0.4

0.2

0.0

income ® transductive education unemployment election
@® inductive
0.71 0.69 0-71 0.69
0.66 @ @
0-% 061 @ 0.61 e e
@
0.51 0-5.3 s 0.4 o,sg
® 0.47 ~ 47 '
& ® 043 042 @ " o 0.42 ® a0 043
®e 7 "2 ® 037 o %0
3. 029 0.31 0.32 0.32 & & %34
& @ ® 2 ®
@
LR LGC SGC GCN LR LGC SGC GCN LR LGC SGC GCN LR LGC SGC GCN

* Graph G; from 2012 election data.
* Graph G, from 2016 election data.
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Label propagation is a powerful tool.

kAN e

o

LP can be effectively applied to features (smoothing / de-noising).

LP is fast and scalable... just need averaging of neighbors.

LP and GNN ideas can come from a common model.

Linear models are often superior to nonlinear ones (GNNSs) in practice.
Residual propagation is super effective (smooth errors),and can also
be implemented with just the LP primitive.

Residual propagation can be added to any base predictor,and we
never really see it hurt performance.
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function interpolate(L, rL; TI)

42 e
Args:
L: mini_batch indices for estimating noise
rL: noise over the mini_batch L
I: label propagation matrix
Returns:
r: noise over all vertices
n = size(l,1);
U = setdiff(1l:n, L);
rU = vcat([cg(rfu,ul, -rfu,Ll*rLfi,:1)" for i in 1:size(rL,1)]...);
r = zeros(size(rL,1), n);
o rl:,L] = rL;
An aside: -
[
[ ) return r;

We @ julia

function estimate_residual(U, L; LBL, pL, T)
Args:
U: vertices to predict
L: vertices with ground truth labels
LBL: ground truth labels on L
pL: predicted labels
I: label propagation matrix

Returns:

1U: predictive label = base predictor output + estimated noise

# for regression task, residual is defined as " true-label minus predicted-label'’
rL = LBL - pL;
rU = interpolate(L, rL; =r)[:,U];

return ruU;
end

https://github.com/000JustinBB0/GaussianMRF/blob/main/predict.jl



Where do we go from here?

1. What if outcomes are not positively correlated?
(non-homophily, disassortativity)

2. What if outcomes are categorical?
(classification problems)
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We can also learn the correlation directly. pia-8enson 20

residual ~ N(O,F™%), T=8(1-aS), S=DY’wp 1?2
(>0 is correlation strength
 a =0 — uncorrelated outcomes (no residual prop)

 a >0 — positively correlated outcomes
* a <0 — negatively

Jointly maximize likelihood of base model + correlated error.

Requires lots of numerical tricks to be scalable.
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We can learn negative correlations.

Ising(+)
— ~+
h
+ —_
Ising(-)
features are grid coordinates
Dataset GCN GCN + standard RP  learned corr. RP
Ising(+) 0.61+0.04 0.72 £ 0.03 0.72 £ 0.03
Ising(-) 0.47 +0.02 0.34 +0.02 0.70 £ 0.03
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A simple binary classification extension

* Positive class — value 1.0
* Negative class — value 0.0
 Threshold for classification

dataset LP LR LGC SGC GCN LGC/RP

SGC/RP

GCN/RP

Elliptic 0.70 0.62 0.61 0.59 0.79 0.71

0.73

0.83
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More classification, and pl. ¥ Bl
how far We Can gEt Without GNNS. Joint work with Qian Huang, Horace He,

Abhay Singh (Cornell undergrads),and
Ser-Nam Lim (FB)

o~
O‘v B Get Started Updates Datasets ~ Leaderboards ~ Paper Team Github
=0

Leaderboard for ogbn-products

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Test Validation

Rank Method Accuracy Accuracy Contact References #Params Hardware Date

1 MLP + C&S 0.8418 = 0.9147 + 0.0009 Horace He (Cornell) Paper, 96,247  GeForce RTX 2080 (11GB Oct 27,
0.0007 Code GPU) 2020

2 Linear + C&S 0.8301 0.9134 + 0.0001 Horace He (Cornell) Paper, 10,763  GeForce RTX 2080 (11GB Oct 27,
0.0001 Code GPU) 2020

3 UniMP 0.8256 + 0.9308 + 0.0017 Yunsheng Shi (PGL Paper, 1,475,605 Tesla V100 (32GB) Sep 8,
0.0031 team) Code 2020

4 Plain Linear + C&S 0.8254 + 0.9103 + 0.0001 Horace He (Cornell) Paper, 4,747 GeForce RTX 2080 (11GB Oct 27,
0.0003 Code GPU) 2020

5 DeeperGCN+FLAG 0.8193 + 0.9221 + 0.0037 Kezhi Kong Paper, 253,743  NVIDIA Tesla V100 (32GB Oct 20,
0.0031 Code GPU) 2020
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We can get great classification accuracy without GNNSs.

(using ideas of residual prop / smoothness, but with some fiddling)

Dataset Correct and Smooth

: ' Smoothed'RésiduaI
Train Labels Residual Correlation kPrediction Correlation/




The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of categorical outcomes (classes) on L.

Problem output.
* Length-|U| vector y,, of categorical outcomes (classes) on U= V'\ L.

Solution evaluation.
» Accuracy = fraction of entries in y, that are correct labels.
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We get a lot of mileage out of smoothness.

1. Base predictions.
Base predictor — a vector of class probabilities p, at each node u.
Use logistic reg. or multilayer perceptron (MLP) via softmax.
No use of graph yet but could use.

2. Residual prop adaptation (correction step).
Form error vector e, = one_hot(y,) - p, at labeled nodes.
Run residual prop on each component — smoothing residual vector r..
Scaling not quite right, correct with z, = p, + s * r, (tune scalar s).

5. Reset on labeled nodes.
z, = one_hot(y,) if u labeled; z, same if v unlabeled (not a probability, though).

4. Smooth corrected vectors (smooth step).
Run LP on each coordinate of z to get smoothed vectors y..

5. Final predictions.

For unlabeled node v, predict maximum entry in y..
43



Ground truth clusters

Linear model
working well
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Residual correlation
helping on periphery

Predicting dorm residence with Rice University Facebook friendship network from 2005.
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We get better accuracy with fewer parameters while

being much faster to train.

Datasets Classes Nodes Edges Parameter A Accuracy A  Time

Products 47 2,449,029 61,859,140 -93.47% +1.53 170.6 s
Arxiv 40 169,343 1,166,243 -84.9% +0.97 9.89s
Cora / 2,708 5,429 -98.37% +1.09 05s

Citeseer 6 3,327 4,732 -89.68% - 0.69 0.48 s
Pubmed 3 19,717 44,338 -96.00% - 0.30 0.85s
Email 42 1,005 25,571 - 97.89% +4.26 42.83 s
Rice31l 10 4,087 184,828 - 99.02% +1.39 39.33s
US County 2 3,234 12,717 - 74.56% +1.77 39.05s
wikiCS 10 11,701 216,123 - 84.88% +2.03 709 s

A few extra things that sometimes help...

1. Augment node features (spectral embedding, motif counts).
2. Pre-trained big GNNs for base classifiers (often hurts, though).

3. Other types of scaling of residual prop output.
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Label propagation should be a standard tool in
graph-based learning for estimating node attributes.

U1

LP is a classical smoothing / correlation technique.

LP helps denoise features, correlate errors, smooth final predictions
While traditionally seen as separate ideas, LP and basic GNN ideas can
be derived from a common model and combined effectively.

#1JALM

y >R = (L + wN)IXBly — (T + wN) (I + wN)y (v — [T, + wN)~2XB].)

Lots of GNN variants... other generative models?
Theory or more principled approaches for classification?
Similar ideas for other graph problems? Link prediction...
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