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§ Email-Eu E-mails between researchers.
§ Phonecall-Eu Phone call records.
§ SMS-A Text messages.
§ College-Msg Online private messages.

Cyclic triangles in Bitcoin.
Fraction of 3-edge temporal triangle motifs 
corresponding to cyclic triangles.  Bitcoin 
has a much higher fraction compared to 
all other datasets.

Blocking and non-blocking communication.
Fraction of all 2 and 3-node, 3-edge motif 
counts that correspond to two groups of 
motifs.  Motifs on the left capture “blocking” 
behavior (common in SMS) and motifs on 
the right capture “non-blocking” behavior 
(common in email).

§ StackOverflow Answers to questions and comments
on questions and answers.

§ Bitcoin              transactions between addresses.
§ WikiTalk edits of user talk pages.
§ FBWall Facebook wall posts.

Counts of all 2- and 3-
node, 3-edge temporal 
motifs in our datasets (!
=1 hour).  Along each 
row, the first two edges 
are the same.  Along 
each column, the third 
edge is the same.

Empirical observations (varying !)

The 36 motifs we can count quicklyOverview
Temporal networks model dynamic complex systems such as telecommunications, credit 
card payments, and social interactions.
Two common ways that people study temporal networks are
1. Growth models consider how nodes and edges enter a network (e.g., how does the 

internet infrastructure grow over time)
2. Snapshot analysis creates a sequence of static graphs by aggregating links in coarse-

grained intervals (e.g., daily phone call graph)

These existing analyses do not capture the rich temporal information of complex systems 
that are constantly in motion.
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Temporal network motifs
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δ = 10s

r-node, k-edge temporal network motif
1. Directed multigraph 

with r nodes and k edges
2. Edge ordering
3. Maximum time span δ
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Efficient counting algorithms
Given a temporal network and a motif, we want to efficiently count the number of 
instances of the motif in the temporal network.
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General algorithm for any motif
1. Ignore timestamps to get a static 

graph and a static motif.

2. Find instances of the static motif in 
the static graph (using known 
algorithms).

3. For each static motif instance, fetch 
time-ordered temporal edges.

4. Count temporal motif instances in 
each temporal edge list using a 
dynamic programming algorithm 
that maintains subsequence 
counts.  Runs in linear time in 
the number of timestamps.
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With our algorithms, we can count 2-node and 3-node, 3-edge motifs efficiently.
It takes a couple hours to count all 36 of these motifs for a phone call network with 2B edges. 
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We propose temporal network motifs, or small temporal subgraph patterns as an 
analytical tool for temporal networks.  These are analogous to network motifs, which are 
small subgraph patterns, used to study static graphs.

Faster algorithms for special cases
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3-node, 3-edge stars
Problem have to enumerate pairs of neighbors of high-degree nodes
Improvement count for all neighbors simultaneously
Runtime complexity  is O(m), where m is the total number of edges (optimal)

3-node, 3-edge triangles
Problem a static edge with many timestamps may appear in several triangles 

à O(Tm) complexity, where T is the number of static triangles
Improvement simultaneously count triangles for edges with many timestamps
Runtime complexity is O(T1/2m), a significant improvement

Triangle speedups Wiki. edits Stack Overflow Bitcoin Texts Phone calls
# temp. edges 10M 63M 123M 800M 2.04B
speedup 1.92x 1.29x 56.5x 2.28x 1.42x
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Special case analysis. Runs in O(k2m) time for 2-node, k-edge motifs, 
where m is the total number of temporal edges.
This is optimal, i.e., linear in the size of the data for constant k.

Empirical observations (! = 1 hour) 
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Motif counts over time in CollegeMsg
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Early time scales 
dominated by the 
single-destination motif

Overall growth from 
1 to 20 minutes

Fewer switches in target 
à more common
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Email-Eu subnetworks
Stack exchange networks
Dissimilar networks

Networks from the same domain have similar 
motif count distributions.
Variance explained by number of principal 
components for three groups of networks.
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