
Neural Jump Stochastic Differential Equations
Junteng Jia and Austin R. Benson · Cornell University

R jj585@cornell.edu, arb@cs.cornell.edu

� https://github.com/000Justin000/torchdiffeq/tree/jj585

Motivation & Problem Statement
Many real-world systems evolve continuously over time but
are interrupted by stochastic events. For example, a social
network user might have some evolving interest in a prod-
uct that is abruptly changed by seeing an ad. How can we
simultaneously learn continuous and discrete dynamics?
Given:
◦Ht = {(τj, kj)}τj<t — events up to time t; τj is a timestamp

and kj is an (optional) discrete or continuous label

Goal:
◦ learn the latent dynamics that generatedHt

◦predict the likelihood or label of future events

Background on Point Process Models
We model event sequences are with point processes, where
event generation is described by a conditional intensity:

P {event in [t, t + dt) | Ht} = λ(t) · dt

Intensity dynamics depend on Ht and can be written as a
jump SDE. If N(t) counts the number of events before t:

dλ(t) = β · [λ(t)− λ0] · dt + α · dN(t)

Limitation: the functional form of λ(t) dynamics for must be
provided . Some widely-used function forms shown above.

[1] Chen et al., Neural ordinary differential equations, NeurIPS (2018).

[2] Du et al., Embedding event history to vector, KDD (2016).

[3] Mei and Eisner, The neural Hawkes process, NeurIPS (2017).

[4] Corner et al., Adjoint Sensitivity Analysis of Hybrid Multibody Dynamical Systems, arXiv (2018).

Research supported by NSF DMS-1830274, ARO W911NF-19-1-0057, and ARO MURI.

Model and Learning
We follow the ideas of Neural ODEs1 and parameterize the
jump SDE model with neural nets and a latent z(t). This gives
our neural jump SDE model (NJSDE):

dz(t) = f (z(t), θ) · dt + w(z(t), θ) · dN(t)
λ(t) = λ(z(t), θ)

We can use learned latent continuous dynamics z(t) for sim-
ulation and prediction.

Training with the adjoint method1,4

(here just to compute the gradient ∂L/∂z(t0) = a(t0))

1. for desired loss or likelihood L, set a(tN) =
∂L

∂z(tN)

2. integrate da(t)
dt = −a(t)∂ f (z(t),θ)

∂z(t) backwards until event at τ

3. update a(τ) = a(τ+) + a(τ+)∂w(z(τ),θ)
∂z(τ)

4. go to step 2

By augmenting z(t) to include θ, this method can be used to
learn all of the latent dynamics. (See paper for details.)

Learning true conditional intensities
• Input: event sequences from classical point processes
•Output: accurately learned conditional intensities λ(t), as

measured by mean absolute percentage error (MAPE)
MAPE Hawkes (E) Hawkes (PL) Self-Correcting

Hawkes (E) 3.5 155.4 29.1
Hawkes (PL) 128.5 9.8 29.1

Self-Correcting 101.0 87.1 1.6

RNN 22.0 20.1 24.3
NJSDE 5.9 17.1 9.3

The NJSDE can learn complex delaying effect of power-law
Hawkes process with interacting latent dimensions (panel D).
(A)

(C)

(B)

(D)

Predicting continuous outcomes (synthetic)
Event labels are sampled from a distribution k ∼ p(k|z(t), θ).
Our model can predict labels with mean absolute error 0.35,
an order of magnitude lower than predicting the mean (3.65).

la
b

e
l

events prediction mean

Predicting discrete outcomes (Web / medical data)
Each event sequence is the awards history of a Stack Over-
flow user or the clinical visit history of a patient. The goal is
to predict the award type or visiting reason for each event.

Error Rate [2] [3] NJSDE

Stack Overf ow 54.1 53.7 52.7
MIMIC2 18.8 16.8 19.8


