Neural Jump Stochastic Differential Equations

Junteng Jia and Austin R. Benson - Cornell University

¥ Jj585Q@cornell.edu, arb@cs.cornell.edu

. https://github.com/000Justin000/torchdiffeqg/tree/ 73585

Motivation & Problem Statement

Many real-world systems evolve continuously over time but
are interrupted by stochastic events. For example, a social
network user might have some evolving interest in a prod-
uct that is abruptly changed by seeing an ad. How can we
simultaneously learn continuous and discrete dynamics?

Given:
oHi = {(Tj,Kj) } <t — events up to time ¢; 7; is a timestamp
and K; is an (optional) discrete or continuous label

Goal:
o learn the latent dynamics that generated H;
o predict the likelihood or label of future events

Background on Point Process Models

We model event sequences are with point processes, where
event generation is described by a conditional intensity:

P {eventin [t,t 4+ dt) | H;} = A(t) - dt

Intensity dynamics depend on H; and can be written as a
jump SDE. If N(t) counts the number of events before t:

AA(E) = B~ [A(E) — Ao - dt +a - dN(t)

-
-
-

17

\4
\4

. [o a

Limitation: the functional form of A(t) dynamics for must be
provided . Some widely-used function forms shown above.

>

1] Chen et al., Neural ordinary differential equations, NeurIPS (2018).

2] Du et al., Embedding event history to vector, KDD (2016).

3] Mei and Eisner, The neural Hawkes process, NeurIPS (2017).

4] Corner et al., Adjoint Sensitivity Analysis of Hybrid Multibody Dynamical Systems, arXiv (2018).

Research supported by NSF DMS-1830274, ARO W911NF-19-1-0057, and ARO MURI

Model and Learning

We follow the ideas of Neural ODEs' and parameterize the
jump SDE model with neural nets and a latent z(#). This gives
our neural jump SDE model (NJSDE):

dz(t) = f(z(t),0) -dt + w(z(t),0) - AN(t)
A(t) = A(z(t),0)

We can use learned latent continuous dynamics z(t) for sim-

ulation and prediction.
4 . N

RN Z(tN)

i oL
: a(t1) 5zt n)
s T ! o—Pp
N to T0 t1 tN—1 N Y

Training with the adjoint method'*
(here just to compute the gradient 9£/5z(t,) = a(fy))

1. for desired loss or likelihood £, set a(ty) = =2~

Bz(tN)
2.integrate dé;—(tt) — —a(t)af E(;((?)’Q) backwards until event at T

3.update a(t) = a(Tt") + a(T+)aw§§§3’9>

4.¢0 to step 2

By augmenting z(t) to include 6, this method can be used to
learn all of the latent dynamics. (See paper for details.)

Learning true conditional intensities

¢ Input: event sequences from classical point processes

e OQutput: accurately learned conditional intensities A(f), as
measured by mean absolute percentage error (MAPE)

MAPE Hawkes (E) Hawkes (PL) Self-Correcting

Hawkes (E) 3.5 1554 290.1
Hawkes (PL) 128.5 9.8 29.1
Self-Correcting 101.0 87.1 1.6
RNN 22.0 20.1 24.3

NIJSDE 5.9 17.1 9.3

The NJSDE can learn complex delaying etfect of power-law

Hawkes process with interacting latent dimensions (panel D).
(A) (B)

Hawkes (Exponential) |Hawkes (Power-Law) == ground truth
— predicted
= = «eo events
< | =]

(C) |Self-Correcting | I “ l H (D)_HaWkeS (Power-Law)
- _\\\\\ \LMLM@\\' A

arb. unit

t ' ' t
Predicting continuous outcomes (synthetic)

Event labels are sampled from a distribution k ~ p(k|z(t),).
Our model can predict labels with mean absolute error 0.35,
an order of magnitude lower than predicting the mean (3.65).

I[--- events .- prediction mean -+ 1.960]

label

Predicting discrete outcomes (Web / medical data)

Each event sequence is the awards history of a Stack Over-
flow user or the clinical visit history ot a patient. The goal is
to predict the award type or visiting reason for each event.

Error Rate [2] [3] NIJSDE

Stack Overfow 54.1 53.7 52.7
MIMIC2 18.8 16.8 19.8

