Neural Jump Stochastic Differential Equations Junteng Jia and Austin R. Benson · Cornell University jj585@cornell.edu, arb@cs.cornell.edu https://github.com/000Justin000/torchdiffeq/tree/jj585 \mathbf{O}

Motivation & Problem Statement

Many real-world systems evolve continuously over time but are interrupted by stochastic events. For example, a social network user might have some evolving interest in a product that is abruptly changed by seeing an ad. How can we simultaneously learn continuous and discrete dynamics? Given:

 $\circ \mathcal{H}_t = \{(\tau_i, \mathbf{k}_i)\}_{\tau_i < t}$ — events up to time *t*; τ_j is a timestamp and \mathbf{k}_i is an (optional) discrete or continuous label

Goal:

 \circ learn the latent dynamics that generated \mathcal{H}_t

predict the likelihood or label of future events

Background on Point Process Models

We model event sequences are with point processes, where event generation is described by a conditional intensity:

 $\mathbb{P}\left\{\text{event in } [t, t + dt) \mid \mathcal{H}_t\right\} = \lambda(t) \cdot dt$

Intensity dynamics depend on \mathcal{H}_t and can be written as a jump SDE. If N(t) counts the number of events before *t*:

Limitation: the functional form of $\lambda(t)$ dynamics for must be provided . Some widely-used function forms shown above.

[1] Chen et al., Neural ordinary differential equations, NeurIPS (2018).

[2] Du et al., Embedding event history to vector, KDD (2016).

[3] Mei and Eisner, The neural Hawkes process, NeurIPS (2017).

[4] Corner et al., Adjoint Sensitivity Analysis of Hybrid Multibody Dynamical Systems, arXiv (2018). Research supported by NSF DMS-1830274, ARO W911NF-19-1-0057, and ARO MURI.

Model and Learning

We follow the ideas of Neural ODEs¹ and parameterize the jump SDE model with neural nets and a latent z(t). This gives our neural jump SDE model (NJSDE):

$$d\mathbf{z}(t) = f(\mathbf{z}(t), \theta) \cdot dt + w(\mathbf{z}(t)) = \lambda(\mathbf{z}(t), \theta)$$

We can use learned latent continuous dynamics z(t) for simulation and prediction.

Training with the adjoint method^{1,4} (here just to compute the gradient $\partial \mathcal{L}/$

1. for desired loss or likelihood \mathcal{L} , set **a** 2. integrate $\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t) \frac{\partial f(\mathbf{z}(t),\theta)}{\partial \mathbf{z}(t)}$ backwards until event at τ 3. update $\mathbf{a}(\tau) = \mathbf{a}(\tau^+) + \mathbf{a}(\tau^+) \frac{\partial w(\mathbf{z}(\tau),\theta)}{\partial \mathbf{z}(\tau)}$ 4. go to step 2

By augmenting z(t) to include θ , this method can be used to learn all of the latent dynamics. (See paper for details.)

 $\mathbf{z}(t), \theta) \cdot dN(t)$

Learning true conditional intensities

- Input: event sequences from classical point processes

MAPE	Hawkes (l
Hawkes (E)	3.5
Hawkes (PL)	128.5
Self-Correcting	101.0
RNN	22.0
NJSDE	5.9

17.1

Predicting continuous outcomes (synthetic)

Event labels are sampled from a distribution $\mathbf{k} \sim p(\mathbf{k}|\mathbf{z}(t), \theta)$. Our model can predict labels with mean absolute error 0.35, an order of magnitude lower than predicting the mean (3.65).

Predicting discrete outcomes (Web / medical data)

Each event sequence is the awards history of a Stack Overflow user or the clinical visit history of a patient. The goal is to predict the award type or visiting reason for each event.

Error Rate	[2]	[3]	NJSDE
Stack Overf ow	54.1	53.7	52.7 19.8
MIMIC2	18.8	16.8	

• Output: accurately learned conditional intensities $\lambda(t)$, as measured by mean absolute percentage error (MAPE) Hawkes (PL) Self-Correcting 29.1 155.4 29.1 9.8 1.6 87.1 24.3 20.1

The NJSDE can learn complex delaying effect of power-law Hawkes process with interacting latent dimensions (panel D).

9.3