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Findings with “universal choice datasets”Overview: singleton vs. subset choice
Given a set of alternatives to choose from, how do people choose?

§ If choosing just one thing (buying a car, picking a restaurant, etc.), there are lots of 
good ML techniques (logistic regression, your favorite deep net, etc.) 

§ If choosing a subset of the alternatives (what to buy after browsing Amazon, 
constructing a playlist on Spotify, etc.), there aren’t as many tools.

We provide an interpretable and computationally feasible model for subset selection 
based on random utility maximization.

Basic concept of the model

Discrete choice model for subset selection

A person makes a selection based on random utility Uij of sets {i, j}.
Simplest case: choices are size-2 subsets.
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You are throwing a small party and want to provide some snacks.
Large set of snack options and want to choose a couple.

Model 1 (Separable model). 
Independent choices.
Easy computation, but 
not realistic.

Model 2 (Full Model).
All subsets as options.

Harder computation, but 
more realistic.

Our model.
Some “special subsets” as 

options + independent choices.
Interpolate between computation 

and modeling power.
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{tortilla chips, potato chips, cookies, pretzels,  
guacamole, celery, nut mix, hummus, meatballs, 
cupcakes, pigs in blankets, cupcakes, potato skins, 
chicken wings, taquitos, pineapple, …} 

Uij =

(
Vi + Vj + εij {i; j} =∈ H
Vi + Vj + Wij + εij {i; j} ∈ H;

corrective utility of subset

Set of special subsets

base item utilities

The εij are i.i.d. errors (per person, per choice) sampled from a Gumbel distribution.

A “rational agent” that chooses the set with largest utility chooses {i, j} from a set of 
alternatives C containing i and j with probability

pij =

(
γpipj {i; j} =∈ H
γpipj + qij {i; j} ∈ H;

pijP
{k;l}⊂C

pkl X

i
pi = 1; pi ≥ 0; γ ≥ 0; pij ≥ 0;

X

{i;j}⊂U
pij = 1
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In these cases, the model has a 
different interpretation as a 
mixture of two multinomial logits.
1. With probability  

follow the “full model” 
restricted to H.

2. With probability 1 – a, 
follow the “separable model”.  

In practice, most correction probabilities qij are positive. LastfmGenres dataset

a =
P

{i;j}∈H qij

Generalizing to larger sets. 

Learning model parameters.
Theorem. Given a budget constraint on the number of special subsets (size of H), it is NP-hard 
to find the set will maximize likelihood (and it is also not a submodular optimization problem).
Theorem. Given H, there is a closed form for the model parameters that maximize likelihood.

Universal choice datasets: the set of available alternatives is always the same.

Dataset # items # choices z1 z2 z3 z4 z5

Bakery 50 67,488 0.05 0.20 0.37 0.25 0.13
WalmartItems 183 16,698 0.51 0.45 0.03 0.01 0.00
WalmartDepts 66 119,526 0.31 0.29 0.17 0.13 0.10
Kosarak 2,605 505,217 0.27 0.30 0.23 0.14 0.07
Instacart 9,544 806,662 0.19 0.21 0.21 0.21 0.19
LastfmGenres 413 643,982 0.52 0.21 0.12 0.08 0.06

The zk are the faction of choices that are size-k sets.
§ Bakery. Sets of things purchased at a bakery.
§ WalmartItems. Sets of items bought at Walmart.
§ WalmartDepts. Sets of departments from which 

items were purchased at Walmart.
§ Kosark. Sets of hyperlinks visited during a 

session on a Hungarian news portal.
§ Instacart. Sets of items in In
§ LastfmGenres. Sets of genres of music listened 

to in a listening session on Last.fm.

Most
positive
{indie, indie}
{rock, indie}
{hip_hop, hip_hop}
{indie, indie, indie}
{rock, rock, rock}
Most
negative
{indie, metal}
{indie, progressive_metal}
{rock, rock, electronic}
{indie, industrial}
{metal, electronic}

Findings with “variable choice datasets”
Variable choice datasets: the set of available alternatives may be different for 
every subset choice.

Two datasets from YOOCHOOSE (Yc)
§ YcItems. Subsets of items purchased from 

those viewed in a browsing session on an 
e-commerce web site

§ YcCats. Subsets of item categories 
purchased from those viewed in a browsing 
session on an e-commerce web site

YcItems YcCats
# items 2,975 20

# choices 156,039 134,057
z1 0.16 0.26
z2 0.20 0.31
z3 0.23 0.23
z4 0.22 0.12
z5 0.18 0.08

The zk are the faction of 
choices that are size-k sets.

Learning model parameters.
Observations. (i) Still NP-hard to find best H; (ii) No closed form; but…

(iii) Given H, likelihood is a concave with linear constraints ⟶ easy to learn.
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Finding. Again, just a few 
corrections (small size of H) lead 
to a substantial gain in likelihood.

Let pD
ij = Nij=

P
{k;l} Nkl be the empirical prob. of observing set {i; j} in the data.

Then the MLE is:
(i) the pi’s are proportional to the number of times item i is selected in any set
{i; j} =∈ H. In other words, pi ∝

P
j:{i;j}=∈H Nij;

(ii) γ = (1 −
P

{i;j}∈H pD
ij )=(

P
{i;j}=∈H pipj);

(iii) given p & γ, q is set to match the empirical distribution of {i; j}: γpipj +qij = pD
ij .

Algorithm. Use heuristic to find H, then use theorem to set model parameters.
Finding. Just a few corrections lead to a substantial gain in likelihood.

Uijk =

(
Vi + Vj + Vk + εijk {i; j; k} =∈ H
Vi + Vj + Vk +Wijk + εijk {i; j; k} ∈ H;

A person makes a selection based on random utility Uijk of sets {i, j, k}.
Key concept. Base item utilities (the Vi) are the same regardless of size of set.

Suppose that H = {{i; j; k}; {i; j; k}}, then
Pr (choose {i; j} | size-2 choice) ∝ γ2pipj + qij
Pr (choose {i; j; k} | size-3 choice) ∝ γ3pipjpk + qijk

Putting everything together.
Use a mixture model and condition on size of selected subset.

Pr (select S | alternatives C)
= zk

z1+···+z|C| · Pr (select S | C; size-k selection),

Observation. Likelihood of zk is concave with a linear constraints ⟶ easy to learn.

zk ≥ 0, k = 1; : : : ; n,
Pn

k=1 zk = 1, n = size of largest choice set


