A Discrete Choice Model for Subset Selection

Austin R. Benson, Ravi Kumar, and Andrew Tomkins

arb@cs.cornell.edu, ravi.k53@gmail.com, atomkins@gmail.com Code \& data \rightarrow https://github.com/arbenson/discrete-subset-choice

Overview: singleton vs. subset choice

Given a set of alternatives to choose from, how do people choose?

- If choosing just one thing (buying a car, picking a restaurant, etc.), there are lots of good ML techniques (logistic regression, your favorite deep net, etc.)
- If choosing a subset of the alternatives (what to buy after browsing Amazon, constructing a playlist on Spotify, etc.), there aren't as many tools.

We provide an interpretable and computationally feasible model for subset selection based on random utility maximization.

Basic concept of the model

You are throwing a small party and want to provide some snacks. Large set of snack options and want to choose a couple.
\{tortilla chips, potato chips, cookies, pretzels, guacamole, celery, nut mix, hummus, meatballs, cupcakes, pigs in blankets, cupcakes, potato skins, chicken wings, taquitos, pineapple, ...\}

Model 1 (Separable model).
Independent choices.
Easy computation, but not realistic.

Our model.
Model 2 (Full Model). All subsets as options. Harder computation, but Some "special subsets" as options + independent choices. Interpolate between computation and modeling power.

Discrete choice model for subset selection

Simplest case: choices are size-2 subsets.
A person makes a selection based on random utility $U_{i j}$ of sets $\{i, j\}$

$$
U_{i j}=\left\{\begin{array}{ll}
V_{i}+V_{j}+\varepsilon_{i j} & \{i, j\} \notin H \\
V_{i}+V_{j}+W_{i j}+\varepsilon_{i j} & \{i, j\} \in H,
\end{array} \quad\right. \text { Set of special subsets }
$$

base item utilities corrective utility of subset
The $\varepsilon_{\mathrm{ij}}$ are i.i.d. errors (per person, per choice) sampled from a Gumbel distribution.
A "rational agent" that chooses the set with largest utility chooses $\{i, j\}$ from a set of alternatives C containing i and j with probability

$$
\begin{array}{ll}
p_{i j} & p_{i j}= \begin{cases}\gamma p_{i} p_{j} & \{i, j\} \notin H \\
\gamma p_{i} p_{j}+q_{i j} & \{i, j\} \in H,\end{cases} \\
\{k, /\} \subset C
\end{array} p_{k l} \quad \sum_{p_{i}=1, p_{i} \geq 0, v \geq 0, p_{i j} \geq 0, \Gamma} .
$$

$$
\sum_{i} p_{i}=1, p_{i} \geq 0, r \geq 0, p_{i j} \geq 0, \sum_{\{i, j\} \subset U} p_{i j}=1
$$

Generalizing to larger sets.
A person makes a selection based on random utility $U_{i j k}$ of sets $\{i, j, k\}$
Key concept. Base item utilities (the V_{i}) are the same regardless of size of set

$$
U_{i j k}= \begin{cases}V_{i}+V_{j}+V_{k}+\varepsilon_{i j k} & \{i, j, k\} \notin H \\ V_{i}+V_{j}+V_{k}+W_{i j k}+\varepsilon_{i j k} & \{i, j, k\} \in H\end{cases}
$$

Suppose that $H=\{\{i, j, k\},\{i, j, k\}\}$, then $\operatorname{Pr}($ choose $\{i, j\} \mid$ size-2 choice $) \propto \gamma_{2} p_{i} p_{j}+q_{i j}$ $\operatorname{Pr}($ choose $\{i, j, k\} \mid$ size- 3 choice $) \propto \gamma_{3} p_{i} p_{j} p_{k}+q_{j j k}$

Putting everything together.

$$
\begin{aligned}
& \text { Use a mixture model and condition on size of selected subset. } \\
& \qquad \begin{array}{l}
\operatorname{Pr}(\text { select } S \mid \text { alternatives } C) \\
\quad=\frac{z_{k}}{z_{1}+\cdots+z_{|C|}} \cdot \operatorname{Pr}(\text { select } S \mid C \text {, size-k selection }), \\
\quad z_{k} \geq 0, k=1, \ldots, n, \quad \sum_{k=1}^{n} z_{k}=1, \quad n=\text { size of largest choice set }
\end{array}
\end{aligned}
$$

Observation. Likelihood of z_{k} is concave with a linear constraints \rightarrow easy to learn.

Acknowledgements.

This research was partially completed while ARB was visiting Google
ARB also supported in part by a Simons Investigator Award

Findings with "universal choice datasets"

Universal choice datasets: the set of available alternatives is always the same.

- Bakery. Sets of things purchased at a bakery.
- Walmartltems. Sets of items bought at Walmart
- WalmartDepts. Sets of departments from which items were purchased at Walmart.
- Kosark. Sets of hyperlinks visited during a session on a Hungarian news portal.
- Instacart. Sets of items in In
- LastfmGenres. Sets of genres of music listened

The z_{k} are the faction of choices that are size- k sets. \begin{tabular}{lllllll}
\hline Dataset \quad \# items \# choices \& z_{1} \& z_{2} \& z_{3} \& z_{4} \& z_{5}

\hline Bakery \& 50 \& 67,488 \& 0.05 \& 0.20 \& 0.37 \& 0.25 \& 0.13
\end{tabular} $\begin{array}{llllllll}\text { Walmartltems } & 183 & 16,698 & 0.51 & 0.45 & 0.03 & 0.01 & 0.00\end{array}$ $\begin{array}{llllllllll}\text { WalmartDepts } & 66 & 119,526 & 0.31 & 0.29 & 0.17 & 0.13 & 0.10\end{array}$

 $\begin{array}{lclllllllllllllll}\text { Lnstacart } & 9,544 & 804,662 & 0.19 & 0.21 & 0.21 & 0.21 & 0.19 \\ \text { LastfmGenres } & 413 & 643,982 & 0.52 & 0.21 & 0.12 & 0.08 & 0.06\end{array}$
to in a listening session on Last.fm

Learning model parameters.
Theorem. Given a budget constraint on the number of special subsets (size of H), it is NP-hard to find the set will maximize likelihood (and it is also not a submodular optimization problem)
Theorem. Given H , there is a closed form for the model parameters that maximize likelihood. Let $p_{i j}^{D}=N_{j i} / \sum_{\{k, \beta} N_{k \mid}$ be the empirical prob. of observing set $\{i, j\}$ in the data. Then the MLE is:
(i) the p_{i} 's are proportional to the number of times item i is selected in any set
$\{i, j\} \notin H$. In other words, $p_{i} \propto \sum_{j:\{i j\} \notin H} N_{i j} ;$
(ii) $\gamma=\left(1-\sum_{\{i,\} \in H} D_{i j}^{D}\right) /\left(\sum_{\{i j\} \notin H} p_{i j} p_{j}\right)$;
(iii) given $p \& \gamma, q$ is set to match the empirical distribution of $\{i, j\}: \gamma p_{i} p_{j}+q_{i j}=p_{i j}^{D}$.

Algorithm. Use heuristic to find H , then use theorem to set model parameters.
Finding. Just a few corrections lead to a substantial gain in likelihood.

Kosarak

In practice, most correction probabilities $q_{i j}$ are positive. In these cases, the model has a different interpretation as a mixture of two multinomial logits.

1. With probability $a=\sum_{\{i, j\} \in H} q_{i j}$ follow the "full model" restricted to H .
2. With probability $1-a$, follow the "separable model".

LastfmGenres datase Most positive \{indie, indie\}
\{rock, indie\} \{hip_hop, hip_hop\} \{indie, indie, indie\} \{rock, rock, rock\} Most negative \{indie, metal\} \{indie, progressive_metal \{rock, rock, electronic\} [indie, industrial]
\{metal, electronic\}

Findings with "variable choice datasets"

Variable choice datasets: the set of available alternatives may be different for every subset choice.

Finding. Again, just a few corrections (small size of H) lead to a substantial gain in likelihood.

The z_{k} are the faction of choices that are size- k sets. Ycltems YcCats \# items 2,975 \# choices 156,039		
z_{1}	0.16	134,057
z_{2}	0.20	0.26
z_{3}	0.23	0.23
z_{4}	0.22	0.12
z_{5}	0.18	0.08

Learning model parameters.
Observations. (i) Still NP-hard to find best H; (ii) No closed form; but. (iii) Given H, likelihood is a concave with linear constraints \rightarrow easy to learn

Two datasets from YOOCHOOSE (Yc)

- Ycltems. Subsets of items purchased from those viewed in a browsing session on an e-commerce web site
- YcCats. Subsets of item categories purchased from those viewed in a browsing session on an e-commerce web site

