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ABSTRACT
Pattern counting in graphs is fundamental to several network sci-

ence tasks, and there is an abundance of scalable methods for esti-

mating counts of small patterns, often called motifs, in large graphs.

However, modern graph datasets now contain richer structure, and

incorporating temporal information in particular has become a key

part of network analysis. Consequently, temporal motifs, which are

generalizations of small subgraph patterns that incorporate tempo-

ral ordering on edges, are an emerging part of the network analysis

toolbox. However, there are no algorithms for fast estimation of

temporal motifs counts; moreover, we show that even counting

simple temporal star motifs is NP-complete. Thus, there is a need

for fast and approximate algorithms. Here, we present the first fre-

quency estimation algorithms for counting temporal motifs. More

specifically, we develop a sampling framework that sits as a layer

on top of existing exact counting algorithms and enables fast and

accurate memory-efficient estimates of temporal motif counts. Our

results show that we can achieve one to two orders of magnitude

speedups over existing algorithms with minimal and controllable

loss in accuracy on a number of datasets.
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1 SCALABLE PATTERN COUNTING IN
TEMPORAL NETWORK DATA

Pattern counting is one of the fundamental problems in data min-

ing [8, 18]. A particularly important case is counting patterns in

graph data, which is used within a variety of network analysis

tasks such as anomaly detection [42, 57], role discovery [19, 50],

and clustering [6, 49, 59]. These methods typically make use of fea-

tures derived from the frequencies of small graph patterns—usually

called motifs [41] or graphlets [47] (we adopt the “motif” termi-

nology in this paper)—and are used across a range of disciplines,

including social network analysis [32, 60], neuroscience [5, 22], and

computational biology [37, 46]. Furthermore, the counts of motifs
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have also been used to automatically uncover fundamental design

principles in complex systems [37, 40, 41].

The scale of graph datasets has led to a number of algorithms

for estimating the frequency of motif counts [2, 7, 12, 24, 63]. For

example, just the task of estimating the number of triangles in a

graph has garnered a substantial amount of attention [4, 11, 35, 52,

56, 58]. Many of these algorithms are based on sampling procedures

amenable to streaming models of graph data [14, 38]. At this point,

there is a reasonably mature set of algorithmic and statistical tools

available for approximately counting motifs in large graph datasets.

While graphs have become large enough to warrant frequency

estimation algorithms, graph datasets have, at the same time, be-

come richer in structure. A particularly important type of rich

information is time [13, 15, 21, 27, 51]. Specifically, in this paper,

we consider datasets where edges are accompanied by a timestamp,

such as the time a transaction was made with a cryptocurrency, the

time an email was sent between colleagues, or the time a packet

was forwarded from one IP address to another by a router. Ac-

cordingly, motifs have been generalized to incorporate temporal

information [29, 45, 66] and have already been used in a variety

of applications [30, 31, 39, 53]. However, we do not yet have algo-

rithmic tools for estimating frequencies of temporal motifs in these

large temporal graphs. This is especially problematic since includ-

ing timestamps increases the size of the stored data; for example, a

traditional email graph would only record if one person has ever

emailed another person, whereas the temporal version of the same

network would record every time there is a communication.

To exacerbate the problem, counting temporal motifs turns out

to be fundamentally more difficult in a computational complexity

sense. In particular, we prove that counting basic temporal star mo-

tifs is NP-complete. This contrasts sharply with stars in traditional

static graphs, which are generally considered trivial to count (the

number of non-induced k-edge stars with center node u is simply(d
k
)
, where d is the degree of u). Thus, our result highlights how

counting problems in temporal graphs involve fundamentally more

challenging computations, thus further motivating the need for

approximation algorithms.

Here we develop the first frequency estimation algorithms for

counting temporal motifs. We focus on the definition of temporal

motifs from Paranjape et al. [45], but our methodology is general

and could be adapted for other definitions. Our approach is based

on sampling that employs as a subroutine any algorithm (satisfying

some mild conditions) that exactly counts the number of instances

of temporal motifs. Thus, our methodology provides a way to accel-

erate existing algorithms [36, 45], as well as better exact counting

algorithms that could be developed in the future.

At a basic level, our sampling framework partitions time into

intervals, uses some algorithm to find exact motif counts in a subset

of the intervals, and weights these counts to get an estimate of
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the number of temporal motifs. A key challenge is that the time

duration of a temporal motifs can cross interval boundaries, which

makes it challenging to obtain an accurate frequency estimator

since motifs of larger duration are more likely to be omitted. At

its core, our sampling framework uses importance sampling [43]

in two different ways. First, we use importance sampling as a way

to design an unbiased estimator by appropriately scaling the exact

counts appearing in some intervals. Second, we use importance

sampling as a way to (probabilistically) choose which intervals to

sample, which reduces the variance of our unbiased estimator.

In addition to the scalability advantages offered by sampling, our

framework has two other important features. First, the sampling

requires a smaller amount of memory. We show an example where

this enables us to count a complex motif on a large temporal graph

when existing exact counting algorithms run out memory. Second,

the sampling procedure has built-in opportunity for parallel com-

putation, which provides a path to faster computation with exact

counting algorithms that do not have built-in parallelism.

As discussed above, our sampling framework employs an ex-

act counting algorithm as a subroutine. The constraints on the

algorithm are that it must provide the exact counts along with the

so-called duration of the motif instance (the difference in the earliest

and latest timestamp in the edges in the motif instance; for example,

the duration in the top left motif instance in Figure 1C is 32 - 16

= 16). This constraint holds for some existing algorithms [36] but

not for others [45]. An additional contribution of our work is a new

exact counting algorithm for a class of star motifs that is compatible

with our sampling framework. As an added bonus, this new exact

counting algorithm actually out-performs existing algorithms.

We test our sampling procedure on several temporal graph

datasets from a variety of domains, ranging in size from 60,000

to over 600 million temporal edges and find that our sampling

framework can improve run time of existing algorithms by one to

two orders of magnitude while maintaining a relative error toler-

ance of 5% in the counts. The variance analysis of our error bounds

tends to be pessimistic, since we make no assumptions on the dis-

tribution of timestamps within our datasets. Thus, we also show

empirically that our worst-case bounds are far from what we see

in the data.

2 PRELIMINARIES ON TEMPORAL MOTIFS
We first review some basic notions of temporal motifs. There are a

few types of temporal motifs, which we discuss in the context of

related work in Section 6. Here we review the definitions used by

Paranjape et al. [45], which is one of the more flexible definitions

that also poses difficult computational challenges.

A temporal edge is a timestamped directed edge between an

ordered pair of nodes. A collection of temporal edges is a temporal

graph (see Figure 1A). Formally, a temporal graph T on a node set

V is a collection of tuples (ui ,vi , ti ), i = 1, . . . ,m, where each ui
and vi are elements of V and each ti is a timestamp in R. There
can be many temporal edges from u to v (one example is in email

data, where one person sends an email to another many times). We

assume that the timestamps ti are unique so that the temporal edges

in a graph can be ordered. This assumption makes the presentation

A B

C

Figure 1: Temporal graph and temporal motifs. (A) Illustra-
tion of a temporal graph. The numbers along edges corre-
spond to timestamps. There can be multiple timestamped
edges between a given pair of nodes. (B) Illustration of a mo-
tif, which is formally a multigraph K with an ordering σ on
its edges. (C) Eight δ-instances of the motif in the temporal
graph with δ = 25. The motifs match the multigraph, the
edge ordering, and appear within the time span δ . The se-
quence of temporal edges (u,v, 16), (u,v, 20), (u,y, 32), (u, z, 48)
is not a δ-instance of the motif because all edges do not fit
within the time span δ . The duration of a motif instanceM ′,
denoted ∆(M ′), is the difference between the last and first
timestamps; for example, the duration of the instance in the
top left is 32 − 16 = 16.

of the paper simpler, but our methods can handle temporal graphs

with non-unique timestamps.

If we ignore time and duplicate edges, the temporal graph induces

a standard (static) directed graph. Formally, the static graph of a

temporal graph T on a node set V is a graph G = (V , E), where
E = {(u,v) | ∃t : (u,v, t) ∈ T }. Edges in G are called static edges.

Next, we formalize temporal motifs (illustrated in Figure 1B).

Definition 2.1 (Temporal motif [45]). A k-node, l-edge temporal

motifM = (K,σ ) consists of a multigraph K = (V , E) with k nodes

and l edges and an ordering σ on the edges of E.

We often find it convenient to represent (K,σ ) by an ordered

sequence of edges (u1,v1), (u2,v2), . . . , (ul ,vl ). Definition 2.1 is a

template for a temporal graph pattern, and we want to count how

many times the pattern appears in a temporal network. Further-

more, we are interested in how often the motif occurs within some

time span δ . A collection of edges in a temporal graph is a δ -instance
of a temporal motifM = (K,σ ) if it matches the same edge pattern

of the multigraphK , the temporal edges occur in the specified order

σ , and all of the temporal edges occur within a δ time window (see

Figure 1C). We now formalize this definition.

Definition 2.2 (Motif δ -instance [45]). A time-ordered sequence

S = (w1, x1, t1), . . ., (wl , xl , tl ) of l unique temporal edges from

a temporal graph T is a δ -instance of the temporal motif M =

(u1,v1), . . . , (ul ,vl ) if

(1) There exists a bijection f on the vertices in M such that

f (wi ) = ui and f (xi ) = vi , i = 1, . . . , l ; and
(2) The edges all occur within the δ time span, i.e., tl − t1 ≤ δ .
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With this definition, motif instances are defined by just the existence

of edges (a general subgraph) and not the non-existence of edges

(an induced subgraph).

We are interested in counting how many motifs appear within

a maximum time span of δ time units. Our sampling framework

will also make use of the actual duration of motif instances, or the

difference in the latest and earliest timestamp of a motif instance.

We formalize this notion in the following definition.

Definition 2.3 (Motif duration). Let S = (w1, x1, t1), . . ., (wl , xl , tl )
be an instance of amotifM as per Definition 2.2 with t1 < t2 < . . . tl .
Then the duration of the instance, denoted ∆(S), is tl − t1.

3 COUNTING TEMPORAL STARS IS HARD
Star motifs as in Figure 1B are one of the fundamental small graph

patterns and are used in, e.g., anomaly detection [3] and graph sum-

marization [28]. In static graphs, counting non-induced instances

of stars is simple. Given the degree du of node u, u is the center

of

(du
k
)
(k + 1)-node stars. Thus, there is a simple polynomial-time

algorithm for computing the total number of stars.

In contrast, once we introduce temporal information, it turns

out that stars become hard to compute. Specifically, we show in

this section that counting temporal stars is NP-complete, and even

determining the existence of a temporal star motif is NP-complete.

This result serves two purposes. First, it highlights that the com-

putational challenges with temporal graph data are fundamentally

different from those in traditional static graph analysis. Second, the

computational difficulty in such a simple type of temporal motif

motivates the need for scalable approximation algorithms, which

we develop in the next section. We begin with a formal definition

of a temporal star motif.

Definition 3.1. A k-temporal star is a temporal motif where the

multigraph is connected and has node set {0, 1, . . . ,k} with edges

(ui ,vi ), i = 1, . . . ,m, where either ui or vi is 0, i = 1, . . . ,m.

The restriction that either ui or vi is 0 means that each edge

either originates from node 0 or enters node 0. The ordering σ of the

edges in the multigraph needed by Definition 2.1 is arbitrary—we

only need the star structure of the multigraph. We will show that

determining the existence of an instance of a k-temporal star in a

temporal graph is NP-complete and then generalize our result to an

even more restricted class of star motifs. We begin with the formal

decision problem.

Problem 1. Given a temporal graphT , a k-temporal star S , and a
time span δ , the k-Star-Motif problem asks if there exists at least

one δ -instance of S in T .

To establish NP-completeness, we reduce k-Cliqe to k-Star-

Motif. A k-Cliqe problem instance is formalized as follows: given

an undirected graphG and an integer k , the k-Cliqe problem asks

if there exists at least one clique of size k in G.

Theorem 3.2. k-Star-Motif is NP-complete.

Proof. Our input is an instance (G,k) of k-Cliqe on a vertex

set V . Assume that the nodes in V are numbered from 1 to n = |V |
(Figure 2A). We construct an instance (T , S, δ ) of k-Star-Motif:

• Construction of T (Figure 2B). For each undirected edge

(u,v) inG , add to T two edges (0,u, (v − 1) · (n + 2) +u + 1)

A B C

Figure 2: Structures used in proof of Theorem 3.2, which
says that determining the existence of a temporal star is NP-
complete. (A) A static graph G. (B) A temporal graph T . (C)
A star motif S . With the reduction, there is a 3-clique inG if
and only if there is a δ-instance of S in T with δ = ∞.

and (0,v, (u − 1) · (n+ 2)+v + 1). For each u ∈ V , we add two

backward edges, (u, 0, (u−1) · (n+2)+1) and (u, 0,u · (n+2)).
• Construction of S (Figure 2C). For each node u ∈ V , add
two backward edges with timestamps (u − 1) · (n + 2) + 1

and u · (n + 2), and k − 1 forward edges with timestamps

{(i − 1) · (n + 2) + 1 + u | i ∈ [n] \ {u}}.
• Set δ = ∞.

The timestamps come from the set {1, . . . ,n2+2n}, and we think
of the timestamps as partitioned inton blocks, withn+2 timestamps

in each block. If the timestamp of an edge lies in {(u − 1) · (n + 2) +
1, . . . ,u · (n + 2)}, then we say that the edge belongs to block u.
Each block then corresponds to a node in G, with the first and last

timestamp in each block reserved for the backward edges we add to

T . For each node u in the original graph, we add the two backward

edges in block u to node u in T , and for each neighbor v of u, we
add a forward edge using the timestamp in the (u + 1)-th position

of block v . Figure 2 is a schematic of the construction. Observe that

if there is a clique inG , then by construction the star motif S occurs

in T .
Intuitively, the backward edges added to T and S serve as “book-

ends”. If the two backward edges corresponding to a node u are

found to be part of S , then each of the k −1 other nodes in the motif

has to contribute a forward edge with timestamps between the two

backward edges of u. By construction of S , an edge connected to v
can only have a timestamp in block u if v is connected to u in G.
This implies that u is connected to the k − 1 other nodes selected
in the motif S . Applying this argument to each node u in the motif

S , there must be a clique in the original graph G. �

The result does not depend on having edges in two directions.

We call a star motif S unidirectional if all of the edges in S either

originate from or enter the center node (node 0, in our notation).

Theorem 3.3. k-Star-Motif is NP-complete even when restricted

to unidirectional stars.

Proof. (Sketch.) Instead of using two backward edges for book-

keeping, we can expand the size of each block to 3n and use the first

n and last n timestamps within the block as the bookends. Thus,

the graph T in the previous proof is modified by connecting the

center node to each node u with 2n forward edges using the 2n
timestamps reserved for bookkeeping in block u. The motif S is

modified by requiring the same forward edges as before, plus an

additional 2n forward edges, with timestamps in 3(u − 1) ·n ·+i and
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3(u−1) ·n+n+ i for i = 1, . . . ,n. By using n forward edges for each

bookend, we ensure that any occurrence S found inT must include

at least one edge from each bookend of the chosen nodes. This

allows us to again argue that k − 1 forward edges must be between

the bookends of block u, implying that there is a k-clique. �

These hardness results illustrate the computational difficulties

in counting temporal graph patterns, which motivates scalable

approximation algorithms for counting such patterns. We next

present a general sampling framework for scalable estimation of

the number of instances of temporal motifs.

4 ALGORITHMIC SAMPLING FRAMEWORK
Supposewe are given amotifM , a time span δ , and a temporal graph

T . In this section, we develop a sampling framework to estimate

the number of δ -instances ofM in T , which we denote by CM . Our

sampling framework will employ some algorithm that can compute

exactly the number of δ -instances ofM on temporal subgraphs of

T . The requirements on the algorithm are that, given a temporal

graph T ′, a motifM , and a time span δ , the algorithm A outputs a

sequence of the count-duration pairs {(counti ,∆i )}, where counti
is the number of instances of the motif with duration ∆i . We denote

this output by A(T ′,M, δ ). We work from these assumptions in this

section, and Section 5 discusses compatible algorithms.

Intervals and the count vector Ys . We begin with some defi-

nitions and technical lemmas that will later be used to develop

our estimator. Let s be a random integer uniformly drawn from

{−cδ + 1, . . . , 0} for some input integer c > 0 that controls the size

of the sampling windows. We call s a shift, and we will eventually

make use of multiple shifts within our sampling framework. We

consider the set of intervals of width cδ with shift s:

Is = {[s + (j − 1)cδ , s + j · cδ − 1], j = 1, 2, . . .}. (1)

For an instanceM ′ of the motifM with duration ∆(M ′), it is easy
to see that the probability (over a random choice of shift s) thatM ′

is completely contained within an interval in Is is

pM ′ = 1 −
∆(M ′)

cδ
. (2)

Next, for an interval I ∈ Is , let XM ′(I ) be an indicator random

variable which equals 1 if M ′ is completely contained in I and 0

otherwise. For each interval I ∈ Is , we associate a weighted count

w(I ) of the number of instances of motif M completely contained

in the interval I :

w(I ) =
∑
M ′

1

pM′
XM ′(I ). (3)

Let Ys be the vector of such counts:

Ys , j = w(Ij ), Ij = [s + (j − 1)cδ , s + j · cδ − 1] ∈ Is (4)

(here, Ys , j denotes the jth coordinate of Ys ). Next, let XM ′ be an

indicator random variable that equals 1 if the motif instance M ′ is
completely contained in an interval in Is and 0 otherwise. Then

∥Ys ∥1 =
∑
M ′

1

pM′
XM ′ . The following lemma says that ∥Ys ∥1 is an

unbiased estimator for the motif count CM for any value of s .

Lemma 4.1. E[∥Ys ∥1] = CM .

Proof. Since E[XM ′] = pM ′ , E[∥Ys ∥1] =
∑
M ′

1

pM′
E[XM ′] =∑

M ′ 1 = CM . �

The next lemma bounds the variance of ∥Ys ∥1.

Lemma 4.2. Var[∥Ys ∥1] ≤
1

c−1C
2

M .

Proof. First, we have that

E[∥Ys ∥
2

1
] = E

[∑
M ′

1

pM′
XM ′

]
=
∑
M1

∑
M2

1

pM
1
pM

2

E[XM1
XM2
],

whereM1 andM2 range over the instances of the motifM . Using

the bounds
1

pM
2

≤ c
c−1 and E[XM1

XM2
] ≤ E[XM1

],

E[∥Ys ∥
2

1
] ≤ c

c−1
∑
M1

1

pM
1

E[XM1
]
∑
M2

1 = c
c−1C

2

M .

Putting everything together,

Var[∥Ys ∥1] = E[∥Ys ∥
2

1
] − (E[∥Ys ∥1])

2

≤
c

c − 1
C2

M −C
2

M =
1

c − 1
C2

M .

�

Our sampling framework estimates ∥Ys ∥1 in order to estimate

the number of motif instances CM . The basic idea of our approach

is to use importance sampling to speed up this estimation task, by

picking a set of intervals in Is and computing their weights. Here,

computing the weight for an interval I uses an exact motif count

restricted to the interval I . Equivalently, we (i) sample a subset of

coordinates ofYs , (ii) compute their values exactly, and (iii) combine

them to estimate ∥Ys ∥1. We describe this procedure next.

Importance sampling for an estimator. Let Ys , j denote the jth
coordinate of Ys , corresponding to interval Ij . Our estimator Z is a

random variable defined as follows. First, we sample interval Ij ∈ Is
(independently) with some probability qj . These qj values will be
based on simple statistics of the intervals; we will specify choices

for qj later but note for now that they do not necessarily sum to 1.

Second, let Q j be an indicator random variable corresponding to

interval Ij , where Q j equals 1 if j is picked and 0 otherwise. Finally,

our estimator is

Z ,
∑
j
Q j

Ys , j

qj
. (5)

Our first result is that Z is an unbiased estimator for CM , the

number of instances of the motifM .

Theorem 4.3. The random variable Z in Eq. (5) is an unbiased

estimator for the number of motif instances, i.e., E[Z ] = CM .

Proof. First, note that E[Q j ] = qj . For any s , E[Z | s] =∑
j Ys , j = ∥Ys ∥1. Hence, E[Z ] = E[∥Ys ∥1] = CM by Lemma 4.1. �

Next, we work to bound the variance of our estimator Z . To this

end, it will be useful to define a scaled version Ŷs of Ys :

Ŷs , j , Ys , j/
√
qj . (6)

The following lemma provides a useful equality on the variance of

our estimator in terms of Ŷs and Ys , conditioned on the shift s .

Lemma 4.4. Var[Z | s] = ∥Ŷs ∥
2

2
− ∥Ys ∥

2

2
.

Proof. By independence of the Q j ,

Var[Z | s] =
∑
j Var

[
Q j

Ys , j
qj

]
=
∑
j
Y 2

s , j

q2

j
qj (1 − qj ).

Therefore, Var[Z | s] =
∑
j Y

2

s , j/qj − Y
2

s , j = ∥Ŷs ∥
2

2
− ∥Ys ∥

2

2
. �
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Algorithm 1: Sampling framework for estimating the num-

ber of instances of a temporal motif in a temporal network.

Without loss of generality, the timestamps in the temporal

network are normalized to start at 0.

Input: Temporal graph T , motifM , time span δ , sampling

probabilities q, number of shifts b, window size

parameter c , exact motif counting algorithm A.
Output: Estimate of the number of instances ofM .

Z ← 0, tmax ← max{t | (u,v, t) ∈ T }

for k = 1, . . . ,b do
s ← random integer from {−cδ + 1, . . . , 0}

for j = 1, . . . , 1 + ⌈ tmax

cδ ⌉ (in parallel) do
if Uniform(0, 1) ≤ qj then

Tj ← {(u,v, t) ∈ T | t ∈ [s+(j−1)cδ , s+j ·cδ−1]}

for (counti ,∆i ) ∈ A(Tj ,M, δ ) do
Zk ← Zk + counti/((1 − ∆i/(cδ )) · qj )

return 1

b
∑b
k=1 Zk

We are now ready to bound the variance of Z .

Theorem 4.5. Var[Z ] ≤ E[∥Ŷs ∥
2

2
] − E[∥Ys ∥

2

2
] + 1

c−1C
2

M .

Proof. For this bound, we first condition on s and then take the

expectation over random choice of s .

Var[Z ] = E[(Z −CM )
2]

= Es
[
((Z − ∥Ys ∥1) + (∥Ys ∥1 −CM ))

2
]

= Es
[
Var[Z | s] + (∥Ys ∥1 −CM )

2
]

= E[∥Ŷs ∥
2

2
] − E[∥Ys ∥

2

2
] + Var[∥Ys ∥1] (by Lemma 4.4)

≤ E[∥Ŷs ∥
2

2
] − E[∥Ys ∥

2

2
] +

1

c − 1
C2

M (by Lemma 4.2)

�

Our analysis thus far has been for a single shift s . If we repeat
the above computations for b randomly chosen shifts and report

the mean of the estimates, then the variance is reduced by a fac-

tor of b. Algorithm 1 outlines the the overall sampling procedure,

assuming that the sampling probabilities qj are given along with

the exact counting algorithm A. In the algorithm, we use Tj to de-

note the subgraph restricted to interval Ij and A(Tj ,M, δ ) to denote
the output of the exact counting algorithm on the interval, which

is a sequence of the count-duration pairs {(counti ,∆i )} of motif

instances contained in the interval. The algorithm also explicitly

states that the parallelism that can be performed over the samples.

Choosing the sampling probabilities. In order to get average

squared error (ϵCM )
2
, we need to set the parameters as follows:

E[∥Ŷs ∥
2

2
] − E[∥Ys ∥

2

2
] +

1

c − 1
C2

M ≤ b(ϵCM )
2

(7)

⇐⇒
E[∥Ŷs ∥

2

2
] − E[∥Ys ∥

2

2
]

C2

M
+

1

c − 1
≤ bϵ2. (8)

The first term in the left-hand side of Eq. (8) combines (i) a natural

measure of sparsity of the distribution of motifs with (ii) the ex-

tent of correlation between the sampling probabilities qj and the

(weighted) motif counts for intervals Ys , j . In order to understand

this, let ℓ denote the dimension of Ys and consider the simple uni-

form setting of qj = 1/ℓ (so one interval is sampled in expectation).

In this case, the term becomes

(ℓ − 1)E[∥Ys ∥
2

2
]

E[∥Ys ∥
2

1
]
. (9)

Equation (9) is a natural measure of sparsity of the vector Ys .
In the extreme case where Ys is a vector with only one non-zero

coordinate, the value is ℓ − 1, and in the other extreme where

Ys is a uniform vector, the value is bounded above by 1. In the

sparse case, we need to increase the sampling probabilities—thus

sampling more intervals—to compensate for the large variance. In

the worst case, this would require looking at all the intervals, i.e.,

we get no running time savings from sampling (however, we will

see in our experiments that the data is far from the worst case in

practice). Nonetheless, the ability of the algorithm to pick sampling

probabilities qj gives flexibility to mitigate the dependence on the

sparsity of Ys . To illustrate this point, in the extremely favorable

case when qj is proportional to Ys , j , i.e., qj = Ys , j/
∑
j Ys , j (so one

interval is sampled in expectation), the first term on the left-hand

side of Eq. (8) is less than 1. This analysis suggests that a good

choice of sampling probabilities roughly balances the two terms:

E[∥Ŷs ∥
2

2
] − E[∥Ys ∥

2

2
]

C2

M
≈

1

c − 1
.

A priori, we do not know Ys or Ŷs . What we can do is choose the

sampling probabilities by some easily measured statistic that we

think is correlated with Ys , such as the number of temporal edges

or number of static edges. For this paper, we simply choose qj to be
proportional to the number of temporal edges in the interval, i.e.,

qj = r ·
|{(u,v, t) ∈ T | t ∈ Ij }|

|T |
, (10)

where r is a small constant (in practice on the order of 10–100). This

leads to substantial speedups, as we will see in the next section.

There are certainly more sophisticated approaches one could take

to choose the qj , and we leave this as an avenue for future research.

Streaming from sampling.When memory is at a premium, the

sampling framework above can be made memory efficient. By con-

sidering the windows Is in chronological order, the edges of past

windows do not need to be stored. By running several estimators in

parallel, we can achieve any accuracy we want while only needing

to store edges in an interval of at most cδ at a time. As we will

see in our experiments, the memory savings allows us to processes

larger temporal graphs than we could with an exact algorithm.

5 COMPUTATIONAL EXPERIMENTS
In this section, we use our sampling framework from Section 4 and

various exact temporal motif counting algorithms to count temporal

motifs on real-world datasets. By exploiting sampling and the ability

sample in parallel, we obtain substantial speedups with modest

computational resources and only a small error in the estimation.

Datasets and implementations of our algorithm are available at

https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs.

Data.We gathered 10 datasets for our experiments. Paranjape et al.

analyzed seven of them [45], and we collected three larger datasets
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Table 1: Summary statistics of temporal networks.

dataset # nodes # static # temporal time

edges edges span

CollegeMsg 1.9K 20.3K 59.8K 194 days

email-Eu-core 986 24.9K 332K 2.20 years

MathOverflow 24.8K 228K 390K 6.44 years

AskUbuntu 157K 545K 727K 7.16 years

SuperUser 192K 854K 1.11M 7.60 years

WikiTalk 1.09M 3.13M 6.10M 6.24 years

StackOverflow 2.58M 34.9M 47.9M 7.60 years

Bitcoin 48.1M 86.8M 113M 7.08 years

EquinixChicago 12.9M 17.0M 345M 62.0 mins

RedditComments 8.40M 517M 636M 10.1 years

to better analyze the performance of our methodology. Table 1

lists summary statistics of the datasets, and we briefly describe

them below. Each dataset is a collection of timestamped directed

edges. The time resolution of each dataset is 1 second, except for the

EquinixChicago dataset, where the time resolution is 1 microsecond.

CollegeMsg [44]. A network of private messages sent on an online

social network at the University of California, Irvine.

email-Eu-core [45]. A collection of internal email records from a

European research institution.

MathOverflow, AskUbuntu, SuperUser, and StackOverflow [45]. These

datasets are derived from user interactions on Stack Exchange ques-

tion and answer forums. A temporal edge represents a user replying

to a question, replying to a comment, or commenting on a question.

WikiTalk [33, 45]. A network of Wikipedia users making edits on

each others’ “talk pages.”

Bitcoin [26]. A network representing timestamped transactions on

Bitcoin. The addresseswere partially aggregated by a de-identification

heuristic [48] implemented by Kondor et al., using all transactions

up to February 9, 2016 [26]. Timestamps are the creation time of

the block on the blockchain containing the transaction. We will

release this dataset with the paper.

EquinixChicago [1]. This dataset was constructed from passive in-

ternet traffic traces from CAIDA’s monitor in Chicago on February

17, 2011. Each edge represents a packet sent from one anonymized

IP address to another. Data was collected from the “A direction” of

the monitor.

RedditComments [20]. This dataset was constructed from a large

collection of comments made by users on https://www.reddit.com,

a popular social media platform. A comment from user u to user v
at time t induces a temporal edge in our dataset.

5.1 Exact counting algorithms
Our sampling framework is flexible since it can use any algorithm

that exactly counts temporal motifs as a subroutine, provided that

this algorithm can be transformed to output the count-duration

pairs {(counti ,∆i )}, where counti is the number of instances of

the motif with duration ∆i . A recently proposed “backtracking”

algorithm satisfies this constraint [36]. The fast algorithms for 2-

node, 3-edge star motifs introduced by Paranjape et al. do not satisfy

these requirements, since the algorithm uses an inclusion-exclusion

rule that cannot output the durations. However, we still use this

algorithm as a baseline in our experiments. We also create a new

exact counting algorithm that is compatible with our sampling

framework, which we describe below.

Algorithm 2: EX23: A simple exact algorithm to count the

two-node motif in Figure 3A. This algorithm can easily be

modified to count any 2-node, 3-edge temporal motif.

Input: Two nodes u and v , and a sequence of temporal

edges (e1, t1), . . . , (eL, tL) with t1 < . . . < tL , time

span δ , and ei = (u,v) or (v,u).
Output: List {(counti ,∆i )} of counts of instances of the

motif in Figure 3A between nodes u and v with

durations ∆i .
C ← empty counter dictionary with default value 0

for i = 1 . . . L do
if ei , (u,v) then continue

Nb ← 0

for j = i + 2 . . . L do
∆← tj − ti
if tj − ti > δ then break

if ej = (v,u) then Nb ← Nb + 1

else C[∆] ← C[∆] + Nb

return [(C[∆],∆) for key ∆ in C]

Backtracking algorithm (BT, [36]). The backtracking algorithm
examines the edges of the input graph in chronlogical order and

matches one edge of the motif at a time. The software was not re-

leased publicly, so we have re-implemented it with some optimiza-

tions. The algorithm is compatible with our sampling framework.

The algorithm is inherently sequential, so our parallel sampling

framework is especially useful with this method.

Fast 2-node, 3-edge algorithm (F23, [45]). Paranjape et al. in-
troduced a collection of algorithms for counting motifs with at

most 3 edges. Here we use their specialized algorithm for motifs

with two nodes and three edges, which produces exact counts in

time linear in the number of edges. This algorithm is incompatible

with our sampling framework, as it does not report the durations

(Definition 2.3) of the counting motifs. However, we still use it for

comparative purposes.

A new exact algorithm for 2-node 3-edge motifs (EX23). We

devised a new algorithm for 2-node, 3-edge motifs that is compati-

ble with our sampling framework. In this case, each pair of nodes

in the input graph forms an independent counting problem. For

each pair of nodes in the input that are neighbours in the static

graph, we gather all temporal edges between the two nodes. Then

we fix the first and last edge of the 3-edge motif by iterating over

all pairs of gathered temporal edges. By maintaining an additional

counter of the number of edges between the two fixed edges, we

can count the number of temporal motifs that begins on the first

fixed edge and ends on the second fixed edge (the procedure is out-

lined in Algorithm 2). Overall, this procedure takes O(
∑
u ,v k2u ,v )

time, where the sum iterates over all pairs of nodes in the graph,

and ku ,v is the number of temporal edges between nodes u and

v . With additional code complexity from special tree structures,

the running time can be improved to O(
∑
u ,v ku ,v logku ,v ) and

still be compatible with our sampling framework. However, this

optimization is not crucial for the main focus of our paper, which

is the acceleration of counting algorithms with sampling. Thus, we
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Table 2: Running time in seconds of algorithms with and without our sampling framework and with and without parallelism.
The modifiers “+S” and “+PS” stands for sampling and parallelized sampling respectively. We compare the backtracking algo-
rithm (BT, [36]), our specialized algorithm for counting 2-node, 3-edge motifs (EX23, Algorithm 2), and the specialized fast
algorithm from Paranjape et al. for counting 2-node, 3-edge motifs (F23, [45]). In all datasets, our EX23 algorithm within our
parallel sampling framework has the fastest running time.

dataset BT BT+S BT+PS EX23 EX23+S EX23+PS F23 F23+P error (%)

CollegeMsg 0.076 0.072 0.038 0.017 0.016 0.009 0.056 0.054 0.33

Email-Eu 0.339 0.305 0.191 0.073 0.078 0.027 0.217 0.165 1.44

MathOverflow 0.545 0.361 0.143 0.233 0.148 0.097 0.998 0.878 1.74

AskUbuntu 1.414 1.305 0.500 0.592 0.311 0.176 2.534 2.371 1.84

SuperUser 2.590 1.446 0.483 1.097 0.194 0.104 4.595 4.129 1.69

WikiTalk 15.92 14.88 5.463 4.737 3.645 0.876 20.46 18.23 0.89

StackOverflow 198.9 160.8 79.58 108.1 69.50 17.81 299.2 230.1 1.95

Bitcoin 514.0 520.7 102.3 494.4 233.5 88.66 10348 10135 3.59

EquinixChicago 480.4 180.3 37.64 382.7 56.33 24.64 477.3 383.8 0.00

RedditComments 7301 7433 2910 1563 3154 367.4 6602 5036 4.83

A B

Figure 3: Motifs used in counting experiments. (A) The 2-
node 3-edge motif for which results are reported in Table 2.
(B) The bi-fanmotif forwhich results are reported inTable 3.

use the simpler un-optimized algorithm, which we will see actually

out-performs the other exact counting algorithms.

5.2 Performance results
We now evaluate the performance of several algorithms: (i) the

three baseline exact counting algorithms described in the previ-

ous section (BT, F23, EX23); (ii) the F23 baseline with parallelism

enabled (F23+P); (iii) our sampling framework on top of backtrack-

ing and our new exact counting algorithm (BT+S, EX23+S); and

(iv) our parallelized sampling framework on top of backtracking

and our new exact counting algorithm (BT+PS, EX23+PS). As ex-

plained above, the F23 algorithm is incompatible with our sampling

framework; we include the algorithm and its parallelized version

as baselines for fast exact counting.

All algorithms were implemented in C++, and all experiments

were executed on a 16-core 2.20 GHz Intel Xeon CPU with 128 GB

of RAM. The algorithms ran on a single thread unless explicitly

stated to be parallel. The parallel algorithms used 16 threads. In

the case of the sampling algorithm, parameters are set so that the

approximations are within 5% relative error of the true value.

Experiments on a 2-node, 3-edge motif. Table 2 reports the

performance of all algorithms on the 2-node, 3-edge temporal motif

in Figure 3A (we chose this motif to allow us to compare against one

of the fast algorithms of Paranjape et al. [45]). The time span δ was

set to 86400 seconds = 1 day in all datasets except EquinixChicago,

where δ was 86400 microseconds (these are the same parameters

used in exploratory data analysis in prior work [36]).

We highlight three important findings. First, our new EX23 al-

gorithm with parallel sampling is the fastest algorithm on every

dataset. Comparing our algorithm against the previous state of the

art, we see speedups up to 120 times faster than the slowest exact

algorithm (see the results for Bitcoin). This is in part due to the fact

that our EX23 algorithm is actually faster the than the backtracking

algorithm (BT) and the fast algorithm of Paranjape et al. (F23). In

other words, our proposed exact algorithm already out-performs

the current state of the art.

Second, in all cases, parallel sampling provides a substantial

speedup over the exact baseline algorithm. Speedups are typically

on the order of 2–6x improvements in running time. We used 16

threads but did not optimize our parallel algorithms; there is ample

room to improve these results with additional software effort.

Third, the running time of the backtracking algorithm with sam-

pling (BT+S) is often comparable to simple backtracking (BT). In

these cases, we hypothesize that the backtracking algorithm has

enough overhead and is pruning enough edges to make simple

sampling not worthwhile under our parameter settings. However,

parallel sampling with the backtracking algorithm (BT+PS) can

yield substantial speedups (see, e.g., Bitcoin, EquinixChicago, and

RedditComments). This illuminates an important feature of our

sampling framework, namely, we get parallelism for free. The back-

tracking algorithm is inherently sequential, but parallel sampling

can achieve substantial speedups. Thus, future research in the de-

sign of fast exact counting algorithms can largely leave parallelism

to be handled by our sampling framework. Finally, although not

reported, the sampling framework requires a smaller amount of

memory than the exact algorithms; thus, if no parallelism is avail-

able, we can at least gain in terms of memory, if not in speed.

We used the heuristic in Eq. (10) to determine the sampling prob-

abilities q in these experiments. To understand why this heuristic

worked for these datasets (i.e., the relative errors are small), we

measured the correlation of q and the coordinates of the vector

Ys used in the sampling framework (Figure 4). In datasets such as

CollegeMsg and WikiTalk, the correlation between is large, and

consequently, the relative error in the estimates is small (Table 2).

Experiments on a 4-node, 4-edge bi-fan motif. Next, we show
the results of the backtracking algorithm on a so-called “bi-fan”

motif (Figure 3B). This motif has four nodes and four temporal
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Figure 4: Sampling probabilities, which are based on the
number of edges (Eq. (10)) and the values of Ys for one sam-
ple s used in estimating the counts of the 2-node, 3-edge tem-
poral motif in Figure 3A. For our sampling procedure to be
effective, these values should be positively correlated (see
the discussion in Section 4). Positive correlation leads to less
variance in the estimation. The correlation ρ is listed in the
legend. The CollegeMsg and WikiTalk datasets both have a
strong positive correlation and a small relative error in the
motif count estimate (see Table 2).

Table 3: Running times in seconds of the backtracking al-
gorithm (BT, [36]) with our sampling framework (“+S” de-
notes serial sampling and “+PS” denotes parallel sampling).
The factor of speedup over the baseline BT algorithm is also
shown. The symbol “✗” indicates that the algorithm failed
due to the machine running out of memory. Our sampling
framework uses less memory than the exact counting algo-
rithm, so it is always able to estimate the motif count on
these datasets.

dataset BT BT+S BT+PS error (%)

CollegeMsg 0.081 0.076/1.1x 0.069/1.2x 1.02

Email-Eu 0.353 0.307/1.2x 0.120/2.9x 0.85

MathOverflow 0.528 0.362/1.5x 0.041/12.9x 3.60

AskUbuntu 1.408 0.909/1.5x 0.078/18.1x 4.52

SuperUser 2.486 1.269/1.96x 0.164/15.2x 2.33

WikiTalk 51.85 35.35/1.5x 11.99/4.3x 2.01

StackOverflow 221.7 93.10/2.4x 5.208/42.6x 4.88

Bitcoin 1175 985.9/1.2x 269.3/4.4x 3.09

EquinixChicago 481.2 45.50/10.8x 5.666/84.9x 1.33

RedditComments ✗ 6739/– 2262/– –

edges. The static version of the motif appears is important in net-

works from a variety of domains, including sociology [64], neu-

roscience [6], gene regulation [10], and circuit design [41]. Since

this motif has four nodes and four edges, our new fast algorithm

and the fast algorithm of Paranjape et al. cannot be used. Thus, we

focus on accelerating the backtracking algorithm with (parallelized)

sampling. For these experiments, we set δ = 3600, as running the al-

gorithm with δ = 86400 exceeds the alloted memory on the Bitcoin

and RedditComments dataset. Table 3 shows the results.

Again, the parallel sampling procedure provides a substantial

speed-up over the baseline algorithm.We emphasize that our simple

parallelization technique is a property of the sampling procedure

and not a property of the exact algorithm. In fact, the exact algo-

rithm is inherently sequential, and the sampling framework enables

parallelism in a trivial way with minimal loss in accuracy. Moreover,

since the sampling algorithm only examines a portion of the graph

at a time, it uses much less memory than the exact counting algo-

rithm. For example, with the RedditComments dataset, the exact

algorithm ran out of memory, while the sampling algorithms com-

pleted successfully (thus no relative error is reported). This feature

is useful in streaming applications, where memory is limited.

6 ADDITIONAL RELATEDWORK
Our sampling framework relies on importance sampling, which is

used for finding motifs in gene sequence analysis [9, 16, 34, 55];

here “motif” refers to short string patterns in DNA. (The term

“motif” in the context of network analysis is borrowed from this

domain [54].) We have already covered much of the related work

in sampling algorithms for pattern counting in static graphs, so

we summarize additional research related to various definitions

of temporal motifs here. Some of these are for sequences of static

snapshot graphs [25, 31, 65], which is a different data model than

the one in this paper, where edges have timestamps in a continuum.

For the data in our paper, there are motifs based on “adjacent events”

that require each new edge in a sequence to be within a certain

timespan of each other [17, 23, 66]. These definitions are slightly

more restrictive than the one by Paranjape et al. analyzed here;

however, the principles of our techniques could also be adapted to

these cases as well. Kovanen et al. use the same notion of event

adjacency but also restrict motif instances to cases where the events

are consecutive for all nodes involved (i.e., within the span of the

motif instance, there can be no other temporal edge adjacent to

one of the nodes) [29]. This definition is even more restrictive in

the events that it captures but it does allows for much faster exact

counting algorithms, e.g., triangle motifs can be counted in linear

time in the size of the data. Thus, speeding up computation with

sampling is less appealing for this definition. Finally, there is also a

line of research in finding dense subgraphs in datasets similar to

our model, which is a specific type of motif [15, 61, 62].

7 DISCUSSION
We have developed a sampling framework for estimating the num-

ber of instances of temporal motifs in temporal graphs. Overall, our

sampling framework is flexible in several ways. First, the frame-

work is built on top of exact counting algorithms. Improvements

in these algorithms can be used directly within our framework,

provided it meets the conditions needed by our framework. In fact,

we demonstrated this to be the case with the specialized algorithm

we developed for 2-node, 3-edge motifs in Section 5, which was

faster than existing exact counting methods for that particular mo-

tif. Second, our sampling framework provides natural parallelism,

which allowed us to achieve orders of magnitude speedups on algo-

rithms that do not have obvious parallel implementations. Finally,

the sampling is inherently less memory intensive, which allowed

us to estimate motif counts on datasets on which exact algorithms

cannot even run (Table 3); thus, our framework makes knowledge

discovery feasible in new cases.

An extraordinary amount of research has gone into scalable esti-

mation algorithms for counting patterns in static graphs. Our paper

takes this line of research in a new direction by considering richer

patterns that arise when temporal information is incorporated into

the graph. We anticipate that our work will open new challenges
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for algorithm designers while simultaneously providing a solution

for domain scientists working with large-scale temporal networks.
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